Temporal Verification of Fault-Tolerant Protocols

Michael Fisher, Boris Konev, and Alexei Lisitsa

Department of Computer Science, University of Liverpoadlidrpool, United Kingdom
{MFi sher, Konev, A. Lisitsa}@i verpool . ac. uk

1 Introduction

The automated verification of concurrent and distributesteays is a vibrant and suc-
cessful area within Computer Science. Over the last 30 y&argporal logic[10, 20]
has been shown to provide a clear, concise and intuitiveriggiegn of many such
systems, and automata-theoretic techniques suahoael checking7, 14] have been
shown to be very useful in practical verification. Recerithg verification ofinfinite-
state systems, particularly parameterised systems comprigibgrary numbers of
identical processes, has become increasingly importdnPfactical problems of an
open, distributed nature often fit into this model, for exdéenpbot swarms of arbitrary
sizes.

However, once we move beyond finite-state systems, whichougleen we con-
sider systems with arbitrary numbers of components, problean occur. Although
temporal logic still retains its ability to express such gex systems, verification tech-
niques such as model checking must be modidaktractiontechniques are typically
used to reduce an infinite-state problem down to a finitee statiant suitable for appli-
cation of standard model checking techniques. Howevergiigar that such abstraction
techniques are not always easy to apply and that more smattéxt verification ap-
proaches must be developed.

In assessing the reliability of such infinite-state systefosmal verification is
clearly desirable and, consequently, several new appesatdiive been developed:

1. model checking for parameterised and infinite state-sysf&n2];

2. constraint based verification using counting abstractifth4d 1];

3. verification based on interactive theorem proviad, 22],including that for tem-
poral logic[4, 23];
and

4. deductive verification in first-ordetecidablegemporal logicq412, 8].

The last of these approaches is particularly appealingndfeing both complete (unlike
(1)) and decidable (unlike (2)), able to verify both safatyd liveness properties, and
adaptable to more sophisticated systems involving aspmcius processes or commu-
nication delays. It is also (unlike (3)) fully mechanisabled does not require human
interaction during the proof.

Now we come to the problem of verifying fault tolerance in f@nls involving
an arbitrary number of processes. What if some of the presedsvelop faults? Will
the protocol still work? And how many processes must faibbethe protocol fails?

Rather than specifyingxactlyhow many processes will fail, which reduces the prob-
lem to a simpler version, we wish to say that thersasmenumber of faulty processes,
and that failure can occur at any time. Again we can captusausing temporal logics.

If we allow there to be an infinite number of failures, then #pecification and veri-
fication problem again becomes easier; however, such sosregrpear unrealistic. In
many cases, correctness of the protocols depends heauie@ssumption of a known
number of failures.

So, we are left with the core probleran we develop deductive temporal techniques
for the verification of parameterised systems whefaie, but unknown, number of
failures can occurhis question is exactly what we address here.

We proceed as follows. Section 2 gives a brief revieviirst-order temporal logic
(FOTL) and its properties. In Section 3, we propose two mechanfsmedapting de-
ductive techniques fdfOTL to the problem of finite numbers of failures in infinite-state
systems, and in Section 4 we outline a case study. FinalBgation 5, we provide con-
cluding remarks.

2 Monodic First-Order Temporal Logics

First-order (linear time) temporal logi¢QTL) is a very powerful and expressive for-
malism in which the specification of many algorithms, pratsecand computational
systems can be given at a natural level of abstraction [26fottunately, this power
also means that, over many natural time flows, this logic ghlyi undecidable (not
even recursively enumerable). Even with incomplete prgefesns, or with proof sys-
tems complete only for restricted fragmerii§ TL is interesting for the case of param-
eterised verification: one proof may certify correctnessuefalgorithm for infinitely
many possible inputs, or correctness of a system with iefininany states.

FOTL is an extension of classical first-order logic by temporaapors for a dis-
crete linear model of time (isomorphic I¥, being the most commonly used model
of time). Formulae of this logic are interpreted over stures that associate with each
elementr of IN, representing a moment in time, a first-order structitg = (D, I,,)
with the same non-empty domain.

Thetruth relationt,, =* ¢ in the structurélt and a variable assignmemis de-
fined inductively in the usual way under for the followingitgale) temporal operators:

My, ':a O¢ iff S):),tn—‘,-l 'Za ¢,

M, = O¢ iff there existsm > n such thabit,, = ¢;

m, = Lo iff forall m > n, M, =* ¢;

M, E* ¢ Uy iff there existsn > n such thatit,,, =* ¢ and foralln <i <m M, = ¢;
M, =* @¢ iff n>0andM,_ =° ¢;

oM, == W iffforall m < nM,, =° ¢

M, = #¢ iff there exists) < m < n such thab,, =° ¢;

M, = oS iff there existsm < n such thatit,,, =* ¢ and forallm < i < n M, | ¢.

The non-temporal aspects have semantics as follows:

m, =T

M, = P(t1,...,tn) Iff (In(a(ty)),...,In(a(tn))) € L.(P)

M, = —p iff not M, =2

M, E* oV iff M, =* porM, =*¢

M, = Jzp iff 9, =° ¢ for some assignmemtthat may differ from
a only inz and such thati(xz) € D

M, =° Vap iff 9, =° ¢ for every assignmertt that may differ from

a only inz and such thati(x) € D

Mt is amodelfor a formulag (or ¢ is truein 90) if there exists an assignmemnsuch that
My E° ¢. Aformula issatisfiabldf it has a model. A formulaisalid if it is satisfiable
in any temporal structure under any assignment. The setliof fe@mulae of this logic
is not recursively enumerable. Thus, there was a need fopproach that could tackle
the temporal verification of parameterised systems @ompleteand decidableway.
This was achieved for a wide class of parameterised systsingmonodic temporal
logic [15].

Definition 1. A FOTL formula is said to banonodic if, and only if, any subformula
with its main connective being a temporal operator has attroos free variable.

Thus,¢ is calledmonodidf any subformula ofp of the formQ 1, [, 0v), 4, etc.,
contains at most one free variable. For example, the foretla [13y. P(z,y) and
V. [JP(z,c) are monodic, whil&/z, y. (P(x,y) = [1P(z,y)) is not monodic.

The monodic fragment dfFOTL has appealing properties: it is axiomatisable [24]
and many of its sub-fragments, such as the two-variable oratlic cases, are decid-
able. This fragment has a wide range of applications, formga in spatio-temporal
logics [13] and temporal description logics [3]. A practiGpproach to proving
monodic temporal formulae is to ufiee-grained temporal resolutioji 7], which has
been implemented in the theorem prover TeMP [16]. It was aked for deductive
verification of parameterised systems [12]. One can seeirth@a@any cases temporal
specifications fit into the even narrower, and decidable,ada@mmonadicfragment. (A
formula is monadic if all its predicates an@ary.)

3 Incorporating Finiteness

When modelling parameterised systems in temporal logformmally, elements of the
domain correspond to processes, and predicates to stageslofprocesses [12]. For
exampleidle(z) means that a processs in the idle stateQVy. agreement(y) means
that, eventually, all processes will be in agreement, while [Jinactive(z) means
that there is at least one process that is always inactiee [&2] for further details.)
For many protocols, especially when fault tolerance is eoned, it is essential that
the number of processes is finite. The straightforward gaisation to infinite numbers
of processes makes many protocols incorrect. Althoughdaédity of monodic frag-
ments holds also for the case of semantics where only terhgiougtures ovefinite

domainsare allowed [15], the proof is model-theoretic and no pradtprocedure is
known.

We here examine two approaches that allow us to handle thegonoof finiteness
within temporal specification:

— first, in 3.1 we consider proof principles which can be useeltablish correctness
of some parameterised protocols;

— thenin 3.2 we prove that, for a wide class of protocols, deniprocedures that do
not assume the finiteness of a domain can still be used.

3.1 Formalising Finiteness Principles

The language dfOTL is very powerful and one might ask if a form of finiteness can be
defined inside the logic. We have found the following priteg(which are valid over
finite domains, though not in general) useful when analygilegoroofs of correctness
of various protocols and algorithms specified-@TL (recall: 4,0 meansy wastrue in

the past):

Fin; (deadline axiom): O(Vx. (OP(z) — #P(x)))
Fing (finite clock axiom): V. [J(P(z) — O [J=P(z)] = [0 (Vx. =P (2))]

Fing (stabilisation axiom):
[LVz. (P(x) — OP(x))] = [OU(Ve. (OP(z) — P(x))]

Actually the Fin; principle is a (more applicable) variant of the intuitivedlearer
principle[vz. O P(x)] = [OVz. 4 P(z)] which is also valid over finite domains.

These principles have the following informal motivatiomeldeadline axiom prin-
ciple, Fiinq, states that there is a moment after which “nothing new isiptes’; that
is, if, after the deadlineP(x) becomes true for some domain element D, there
already was a moment in the past such tRét) was true oru at that moment. The
final clock axiom,F'ins, states that if the moments when the predidate) becomes
true on some domain element are interpreted as clock tiblksglock will eventually
stop ticking. Finally, the stabilisation principl&;ins, states that if some domain area,
whereP(z) is true, is growing then it will stop growing at some pointcén be easily
seen that all these principles hold true in arbitrary finibengin structures.

Now, considerFin; for i = 1,2,3 as axiom schemes which can be added to a
reasonableaxiomatisation offFOTL (call this, AxzroT.) in order to capture, at least
partially, “finite reasoning”. By a ‘reasonabldzroT., we mean that we assume some
Hilbert-style finitary axiomatic system f&tOTL extending a standard, non-temporal,
predicate logic axiomatisation by, at least, the axiom s@ta presented in Fig. 1.

We show that all these three principles are actually egeintahodulo any reason-
able AzgorL (i.€. they can be mutually derived). The principle (an axeoheme); is

said to be derivable froms, if, for every instancex of F, we havedxrot. + F5 - a.
We will denote it simplyAxgorL + Fo F Fy.

Theorem 1 The principlesFiing, Fins and Fing are mutually derivable.

Future time axioms:

FO. F Ly — ¢
F1. F O—p < =O¢

F2. FO(¢p = ¢) — (Op — O9)
F3. F O(p — ¢) — (e — D)
F4. + Oy — OO0¢

F5. F (p— Op) = (¢ — Oy)

F6. - (pUy) =9V (pAO(pUy))
F7. - (eU®) = Oy

Past time axioms

PLF-@-¢p— @p
P2.-@®(p—v) — (@p— @)
P4. + @false

Mixed axiom:

M8. Fo—-O@¢p

Interaction axioms:

1. FVz. (Op(z)) = O(Va. ¢(x)
2. FVz. (@p(z)) — @ (Vz. d(x)

=

Fig. 1. AzrotL: Axioms of FOTL (all except the Interaction Axioms are taken from [18])

Proof
1. AxrotL + Fing F Fino.
Assumevze. [(P(x) — O [1=P(x)) (x), which is the assumption dfins.
Consider therfin; which isQ(Vx.(P(x) V OP(x) — 4P(x))).
In Fin, assume)P(c) for an arbitraryc inside of {(...), then we have$ P(c)
which together with £) gives—P(¢) and contradiction.
That means, we haw(Vz.—(P(z) vV OP(z))) which implies) [](Vz.—P(x)).

2. AzgotL + Fing F Fing.
DefineQ(x) to be—P(z) A OP(x).
Assume[] (Vz.(P(z) — OP(x))) ().
Thenwe hav&/z. [1(Q(z) — O [1-Q(x)) from the definition ofQ(x) and x).
Applying Fiine we getO [J(Va. =Q(z)) which is equivalent ta) [1(Vz. — O
P(z) v P(z)) and to¢ [](Vx. (OP(z) — P(x))).

3. AzxrotL + Fling - Fling.

Applying to a valid formula, provable izeoT, V2 (¢P(z) — O#P(x)) the
principle Fing we get

00 Vz.(O#P(x) — $P(2))).

This implies [18]0 [(Vz. =(OP(x)) A ~4P(x))).
After propositionally equivalent transformations we dget |(Vz. (OP(z)) —
$P(z)), which isFin;.

This theorem shows that all three principles are equivadeit so can be used inter-
changeably in the proofs. However, the differing syntadtiorms may make some

principles more suitable fanatural proofs, yet may affect the efficiency of the auto-
mated proof search using these principles.

3.2 Eventually Stable Protocols

In Section 3.1 we highlighted some deduction principleduwapg the finiteness of the
domain. Alternatively, we can consider a family of protacalhich terminate after a
certain (but unknown) number of steps. For example, if epeogess sends only a finite
number of messages, such protocol will eventually ternein@bnsensus protocols [19],
distributed commit protocols [6], and some other protodibigto this class. Temporal
models of specifications of such terminating protocols wilentually stabilise, that
is, the interpretationg,, will be the same for sufficiently large. We show that for
theseeventually stablepecifications satisfiability over finite domains coincidéth
satisfiability over arbitrary domains.

Let P be a set of unary predicates. T$tabilisation principle w.r.tP is the formula:

Stabp = [1(Vz /\ [P(z) = OP()).

PcP

Informally, if Stabp is true at some moment of time, from this moment the integpret
tion of predicates irP does not change. Let be a monodic temporal formula. L&t
be the set of unary predicates occurringinThen the formula

Pstab = ¢ A QStab

is called aneventually stable formulawe formulate the following proposition for
monodic monadic formulae; it can be extended to other mancldsses obtained by
temporalisation by renamini@] of first-order classes with the finite model property.

Proposition 1. Let ¢ be a monodic monadic formula. The eventually stable formula
ostab IS Satisfiable in a model with a finite domain if, and onlyi,,, is satisfiable in
a model with an arbitrary domain.

This proposition implies that if a protocol is such that inhdae faithfully represented
by an eventually stable formula, correctness of such pobtcan be established by a
procedure that dogsot assume the finiteness of the domain.

Proof For simplicity, we prove the proposition for formulae in Died Separated Nor-
mal Form (DSNF) [8] only. The proof can be extended to the garease by the con-
sideration of sub-formulae @f.

A monodic temporal probler® in divided separated normal form (DSNKg a
quadrupleld, Z, S, E), where:

1. the universal pattf and the initial parf are finite sets of first-order formulae;

2. the step parS§ is a finite set of clauses of the form=- Ogq, wherep andq are
propositions, and’(z) = OQ(z), whereP and(are unary predicate symbols
andzx is a variable; and

3. the eventuality pai is a finite set of formulae of the forf)L(x) (a non-ground
eventuality clause) angll (aground eventualitglause), wheréis a propositional
literal andL(x) is a unary non-ground literal with variabteas its only argument.

With each monodic temporal problefp/,Z, S, E) we associate th€OTL formula
A LU N VxS A [IVzE. When we talk about particular properties of a temporal
problem (e.g., satisfiability, validity, logical conseques, etc) we refer to properties
of this associated formula. Every monodic temporal fornada be transformed into
divided separated normal form (DSNF) in a satisfiability igglence preserving way
with only linear growth in size [17].

LetP = (4,Z,S,€&) be a monodic temporal problem in DSNF. We only have to
show that ifPs:,p has a modelilt = My, My, ..., with an infinite domain, it also
has a model with a finite one. Lé¥ be such thaft)iy | Stab. Consider now the
temporal structur@’ = My, My, ... My_1, My, My, My, ... (i.e. from moment
N the structure does not change). It can be seerditias a model forP.

For every predicateP, occurring in P, we introduceN + 1 new predicates
PO pt ... PN of the same arity. Lety be a first-order formula in the language of
P. We denote by¢]?, 0 < i < N, the result of substitution of all occurrences of predi-
cates ing with their i-th counterparts; (e.gR(x1, x2) is replaced withP? (1, 22)).

- Letor = A{lg)’ | ¢sinT)
- Letou = AL Al | oisinu).

“Letgs = ALA ((F@) = Q¥@) | Pw) = OQW)isins) 1
A{Vz (PN (z) = QN (z) | P(x) = OQ(x) is in S}

— Letge = A{[VzL(2)|V | L(x)isin &}

Letoro = ¢z Ay Aps A pe. Note thatp o does not contain any temporal operators.
Consider now a first-order structufg with the same domai as 1, interpreting
constants in the same way, and such that Pi(aq,...,a,), for someay, ..., a, €
D, if, and only if, M; = P(aa,...,a,). It can be seen that thét = ¢ro. SinceP is
a monodic monadic problem o is a monadic first-order formula, which has a model
with a finite domain. Reversing the process, one can constrmeodel forP with a
finite domain. a

4 Case Study: FloodSet Protocol

Next, we provide an example of how both methods describeceti@& 3 (explicit
finiteness principles, and stabilisation principle forteaols with finite change) can be
used for the proof of correctness of a protocol specified imoaicFOTL.

The setting is as follows. There areprocesses, each having mput bit and an
output bit The processes work synchronously, run the same algorittduaebroad-
castfor communication. Any message sent by a non-faulty proisegstantaneously
delivered to all other processes. Some processes may thifrmm that point onward,
such processes do not send any further messages. Note,drpthet the messages sent
by a processn the moment of failurenay be delivered tan arbitrary subsetf the
processes. Crucially, there isfiaite bound, f, on the number of processes that may
fail.

The goal of the algorithm is to eventually reach an agreepientto produce an
output bit, which would be the same for all non-faulty praees It is required also that
if all processes have the same input bit, that bit should bdywwed as an output bit.

This is a variant oFloodSet algorithm with alternative decision rulie terms of
[19], p.105) designed for solution of the Consensus prolifethe presence of crash
(or fail-stop) failures, and the basic elements of the prot¢adapted from [19) are
as follows.

— In the first round of computations, every process broaddsitsput bit.
— In every later round, a process broadcasts any ledirst time it sees.it
— In every round the (tentative) output bit is set to the minimvalue seen so far.

11n [19], every proces&nowsthe boundyf in advance and stops the execution of the protocol
after f + 2 rounds, producing the appropriate output bit. We consibdenersion where the
processes do not knoyin advance and producetentative output biait every round.

The correctness criterion for this protocol is that, evatiju(actually, no later than in
f + 2 rounds) the output bits of all non-faulty processes will lne $ame.

Claim. The above FloodSet algorithm and its correctness conditoam be specified
(naturally) within monodic monadic temporal logic withaguality, and its correctness
can be proved in monodic monadic temporal logic, using trewvafinite clock axiom.

We give a larger specification below, but first note the keyiagsaoncerning this:

1. Each process] must be categorised as one of the above types:
LI(Vz(Normal(z) | Failure(x) | Faulty(zx)))
here the symbol| means that exactly one of the predicatdrmal(x),
Failure(z), andFaulty(x) is true.
2. Ifwe see a0’ (the process has this already, or receives a message vsthicttue)
then we output0’:
LI (Va(=Faulty(xz) A Seen(z,0) — O Output(z) = 0))
3. If we have not seen &"but haveseen al’, then we outputl1’:
LI(Vz. (= Faulty(x) A ~Seen(x,0) A Seen(x,1) — O Output(x) = 1))
4. The condition to be verified, namely that eventually adir{fiaulty) processes agree
on the bit 0", or eventually all agree on the bit™

O((Va. ~Faulty(x) = Output(z) = 0) V (Va. = Faulty(z) = Output(x) = 1))

We do not include the whole proof here, but will reproduce gienfiormulae to give the
reader a flavour of the specification and proof.

4.1 Specification

A FOTL specification of the abovEloodSet algorithme is given as a conjunction of
the following formulae, divided for convenience, into faoups as follows

1. RULES:
L (1stRound — (O—-1lstRound)
L (V. (Failure(x) — O Faulty(x)))
[1(Vz. (1stRound A Normal(z) — O (Send(z, Input(x)) A Seen(z, Input(x)))))
LI(Vz. (1stRound A Failure(x) — O (Send_Failure(z, Input(z)) A
Seen(z, Input(z)))))
[1(Vz.Vy. (m1stRound A Normal(x) A Received(z,y) A —Seen(z,y) —
O Seen(z,y) A Send(z,y)))
[1(Vz.Vy. (m1stRound A Failure(z) A Received(z,y) A —Seen(z,y) —
O(Seen(z,y) A Send_Failure(z,y))))
Ll(Vz. Vy. (Faulty(z) — O (—~Send(z,y) A ~Send_Failure(z,y))))
[1(Vz.Vy. (m1stRound A —Faulty(z) A (—Received(z,y) V Seen(z,y)) —
O(—Send(z,y) A ~Send_Failure(x,y))))
(1 (Vz. (mFaulty(xz) A Seen(z,0) — O Output(z) = 0))
[1(Vz. (mFaulty(x) A =Seen(z,0) A Seen(z,1) — O Output(xz) = 1))
2. FRAME CONDITIONS :
CJ(—1stRound — (O—1stRound)

O (V. (Faulty(x) — O Faulty(x)))
L1 (Vz. (mFaulty(x) A = Failure(z) — O-Faulty(z)))
O (Va. Vy. (Seen(z,y) — O Seen(z,y)))

3. CONSTRAINTS:
LI (Vz. Ym. (Send(xz, m) — Vy. Received(y,m)))
(Vz.Vm. (Received(z,m) — Jy(Send(y,m) V Send_Failure(y,m))))
(Vz.Vm. —~(Send(xz,m) A Send_Failure(z,m)))
(Vz. (Normal(z) | Failure(z) | Faulty(x)))

]
[
]
C1(Vz. (Output(z) = 0V Output(x) = 1))

LI (Vz. (Input(x) = 0V Input(z) = 1))

[1(Vz.Vy. (Send(z,y) V Received(x,y) V Seen(z,y)) — (y =0V y=1))
4. INITIAL CONDITIONS:

start = 1st Round)

start = Vz. Normal(z))

start = Vz.Vy. —Seen(z,y))

[
]
U Yy

[C(start = Vz. (Input(x) =0V Input(x) = 1))

A~~~

Note. One can get rid of all equalities in this example by using dinéss of the set
of values, which are supposed to be second argumesStei(_,), Send(-,-) and
Send_Failure(-,).

Notice that the temporal specification uses, among othleesptedicatesVormal(-)

to denote normal operating process&siilure(_) to denote processes experiencing
failure (at some point of time)Faulty(-) for the processes already failed. There are
also predicates such &&en(_,_) specifying the effect of communications. Having
these, it is straightforward to write down the temporal fotee describing the above
protocol and correctness condition (i.e. (4) above). Inghaof of correctness below,
thefinite clock axiom has to be instantiated to tHéuilure(x) predicate (i.e. replace
P by Failure in Fins).

4.2 Refutation

In this section we will consider the actual proof concerrtimgcorrectness of the above
specification with respect to the conditions we have preseiwe will not present the
full proof, but will provide an outline indicating how the rjoa steps occur.

First of all, the clausal temporal resolution approach igfatation procedure and
S0 we add the negation of the required condition (h¢) and attempt to derive a con-
tradiction. We note that is

L ((3z—~Faulty(x) A Output(x) # 0)
A
(Fz—Faulty(x) A Output(x) # 1))

We translate formulae such a®@dtput(x) # 0’ to ‘=—Output(z)’ since the only
values allowed are(’ and ‘1’. Consequently the two temporal formulae derived from
—) are:

C1l: [J(3z~Faulty(x) A Output(x))
C2: [](3x-Faulty(x) A ~Output(z))

Frame conditions and the finite clock axiom applied forfadure predicate give
C3: O (V. ~Failure(x))

FromC1 andC3 we have

C4: OL(Vz. ~Failure(x) A Jx(—~Faulty(x) A Output(x)))

FromC'4 and constraints we now have

C5: O 1(Vz. - Failure(z) A Jz(Normal(z) A Output(z)))

By rules concernin@utputandC5 we get

C6: O [J(FzNormal(x) \ @ Seen(z,0))

Next, let us note a useful variant of the induction axiomexhitheminimal element
principle:
VZ([0p(2)] — [O(p(z) N @M —¢(Z))])

By the minimum element principle

C7: O (3zNormal(x) A #(Seen(xz,0) N @M —Seen(z,0)))

By rules fromC7

C8: OL1(3zNormal(x) N 4(@ Received(z,0)))

By rules fromC'8

C9: OL1(3zNormal(xz) N 4(@ (Received(x,0) A ~Seen(z,0))))
By rules fromC9

C10: O (FzNormal(xz) A #(Normal(x) A Received(x,0) A =~Seen(z,0))))
By rules fromC'10

C11: Q[1(FzNormal(x) A #(Send(zx,0)))

By rules fromC11

C12: O[] (#Vz. Seen(z,0)))

FromC12

C13: O[1(Vz. Seen(z,0))

From(C?2 and rules

C14: [J(3y—Seen(y,0))

Finally, from C'13 andC'14 we get a contradiction.
O

4.3 Eventual Stabilisation of FloodSet Protocol

One may also verify thé&loodSetprotocol using the eventual stabilisation principle
from Section 3.2. To establish the applicability of the pijple one may use the fol-
lowing arguments: every process can broadcast at most,tanmktaking into account
finiteness of both the numbers of processes and of failunespay conclude that even-
tually the protocol stabilises. Note that such an analysig allows us to conclude that
the protocol stabilises, but its properties still need tgobeved. Let¢ be a temporal
specification of the protocol. Taking into account the disdion property, the proto-
col is correct iff (¢ A —))stap iS NOt satisfiable over finite domains. By Proposition 1,
there is no difference in satisfiability over finite and gextielomains for such formulae
and so one may use theorem proving methods developed fordizananodic temporal
logics over general models to establish this fact. In théecthe proof follow(s) exactly
the form of proof presented in the previous section, withékeeption that statement
C3: O (V. ~Failure(x)) is obtained in a different way. One of the conjuncts of the
stabilisation principle with respect thA —) is

O (VzFailure(z) = O Failure(z) .
Together with the rule
L(Vz. (Failure(z) — O Faulty(x)))
and the constraint
LI(Vz. (Normal(z) | Failure(z) | Faulty(x)))

this impliesC3, as required.

5 Concluding Remarks

In this paper we have introduced two approaches for handtiadiniteness of the do-
main in temporal reasoning.

The first approach uses explicit finiteness principles asragi(or proof rules), and
has potentially wider applicability, not being restrictedprotocols with the stabilisa-
tion property. On the other hand, the automation of tempm@df search with finiteness
principles appears to be more difficult and it is still laggah open problem.

In the approach based on the stabilisation principle, aflitdness reasoning” is
carried out at the meta-level and essentially this is useddace the problem formu-
lated for finite domains to the general (not necessarilyd)niase. When applicable,
this method is more straightforward for implementation aotentially more efficient.
Applicability, however, is restricted to the protocols whihave stabilisation property
(and this property should be demonstrated in advance aseopidition).

Finally, we briefly mention some future work. Automated préechniques for
monadic monodidOTL have been developed [8,17] and implemented in the TeMP
system [16], yet currently proof search involving the finigss principles requires im-
provement. Once this has been completed, larger case stuillibe tackled. The tech-
niques themselves would also benefit from extension inaglyprobabilistic, real-time
and equational reasoning.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

P. A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M.sala. Regular Model Checking
for LTL(MSO). In Proc. 16th International Conference on Computer Aided figeiion
(CAV), volume 3114 ot NCS pages 348—-360. Springer, 2004.

. P. A. Abdulla, B. Jonsson, A. Rezine, and M. Saksena. Rgolkiveness by Backwards

Reachability. InProc. 17th International Conference on Concurrency Th@®NCUR)
volume 4137 oLNCS pages 95-109. Springer, 2006.

. A. Artale, E. Franconi, F. Wolter, and M. Zakharyaschevieinporal Description Logic for

Reasoning over Conceptual Schemas and Querid2rom European Conference on Logics
in Artificial Intelligence (JELIA) volume 2424 of NCS pages 98-110. Springer, 2002.

. N. Bjorner, A. Browne, E. Chang, M. Colon, A. Kapur, Z. ManrH. B. Sipma, and

T. E. Uribe. STeP: Deductive-Algorithmic Verification of &gdive and Real-time Systems.
In Proc. 8th International Conference on Computer-Aided figation (CAV) vol. 1102 of
LNCS pages 415-418, Springer-Verlag, 1996.

. M. Calder, and A. Miller. An Automatic Abstraction Teclyuoie for Verifying Featured, Pa-

rameterised System$heoretical Computer Sciend® appear.

. D. Chkliaev, P. van der Stock, and J. Hooman. Mechanicafisation of a Non-Blocking

Atomic Commitment Protocol. IRroc. ICDCS Workshop on Distributed System Validation
and Verification pages 96-103, IEEE, 2000.

. E. Clarke, O. Grumberg, and D. Pelédodel CheckingMIT Press, Dec. 1999.
. A. Degtyarev, M. Fisher, and B. Konev. Monodic Temporasétetion. ACM Transactions

on Computational Logic7(1):108-150, January 2006.

. G. Delzanno. Constraint-based Verification of ParamettiCache Coherence Protocols.

Formal Methods in System DesjdiB(3):257-301, 2003.

E. A. Emerson. Temporal and Modal Logic.Handbook of Theoretical Computer Science
pages 996-1072. Elsevier, 1990.

J. Esparza, A. Finkel, and R. Mayr. On the Verification cd&lcast Protocols. IRroc. 14th
IEEE Symp. Logic in Computer Science (LIQ®)ges 352-359. IEEE CS Press, 1999.

M. Fisher, B. Konev, and A. Lisitsa. Practical Infinitate Verification with Temporal Rea-
soning. InVerification of Infinite State Systems and Securitiume 1 ofNATO Security
through Science Series: Information and Communicatios Press, January 2006.

D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and MkEaryaschev. On the Computa-
tional Complexity of Spatio-Temporal Logics. Rroc. 16th International Florida Artificial
Intelligence Research Society Conference (FLAIR&Jes 460-464. AAAI Press, 2003.
G. J. HolzmannThe Spin Model Checker: Primer and Reference ManAdbison-Wesley,
2003.

I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decid&bhgments of First-order Tempo-
ral Logics. Annals of Pure and Applied Logit06:85-134, 2000.

U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMPEemporal Monodic Prover.
In Proc. 2nd Second International Joint Conference on Auteth&easoning (IJCARYol-
ume 3097 oLNAI, pages 326-330. Springer, 2004.

B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. HustaMechanising First-order
Temporal Resolutionlnformation and Computatiqri99(1-2):55-86, 2005.

O. Lichtenstein and A. Pnueli, Propositional Tempomygjics: Decidability and Complete-
ness, International Journal of the IGPL, Vol. 8 No , 55-85.

N. A. Lynch. Distributed Algorithms Morgan Kaufmann, 1996.

Z. Manna and A. PnueliTemporal Logic of Reactive and Concurrent Syste@pringer,
1992.

21. S. Owre, J. Rushby, N. Shankar, F. von Herik@mal Verification for Fault-Tolerant Archi-
tectures: Prolegomena to the Design of PMBEE Transactions on Software Engineering,
Volume 21 No 2, 107-122

22. C. Rockl.Proving write invalidate cache coherence with bisimulation Isabelle/HOL In
Proc. of FBT 2000, 69-78, Shaker, 2000.

23. A. Pnueli and T. Arons.TLPVS: A PVS-based LTL verification systein Verification:
Theory and Practicevolume 2772 of.NCS pages 598-625. Springer, 2003.

24. F. Wolter and M. Zakharyaschev. Axiomatizing the Momodgiagment of First-order Tem-
poral Logic. Annals of Pure and Applied Logi¢18(1-2):133-145, 2002.

