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1 Introduction

The automated verification of concurrent and distributed systems is a vibrant and suc-
cessful area within Computer Science. Over the last 30 years, temporal logic[10, 20]
has been shown to provide a clear, concise and intuitive description of many such
systems, and automata-theoretic techniques such asmodel checking[7, 14] have been
shown to be very useful in practical verification. Recently,the verification ofinfinite-
state systems, particularly parameterised systems comprisingarbitrary numbers of
identical processes, has become increasingly important [5]. Practical problems of an
open, distributed nature often fit into this model, for example robot swarms of arbitrary
sizes.

However, once we move beyond finite-state systems, which we do when we con-
sider systems with arbitrary numbers of components, problems can occur. Although
temporal logic still retains its ability to express such complex systems, verification tech-
niques such as model checking must be modified.Abstractiontechniques are typically
used to reduce an infinite-state problem down to a finite-state variant suitable for appli-
cation of standard model checking techniques. However, it is clear that such abstraction
techniques are not always easy to apply and that more sophisticated verification ap-
proaches must be developed.

In assessing the reliability of such infinite-state systems, formal verification is
clearly desirable and, consequently, several new approaches have been developed:

1. model checking for parameterised and infinite state-systems [1, 2];
2. constraint based verification using counting abstractions[9, 11];
3. verification based on interactive theorem proving[21, 22], including that for tem-

poral logic [4, 23];
and

4. deductive verification in first-orderdecidabletemporal logics[12, 8].

The last of these approaches is particularly appealing, often being both complete (unlike
(1)) and decidable (unlike (2)), able to verify both safetyand liveness properties, and
adaptable to more sophisticated systems involving asynchronous processes or commu-
nication delays. It is also (unlike (3)) fully mechanisableand does not require human
interaction during the proof.

Now we come to the problem of verifying fault tolerance in protocols involving
an arbitrary number of processes. What if some of the processes develop faults? Will
the protocol still work? And how many processes must fail before the protocol fails?



Rather than specifyingexactlyhow many processes will fail, which reduces the prob-
lem to a simpler version, we wish to say that there issomenumber of faulty processes,
and that failure can occur at any time. Again we can capture this using temporal logics.
If we allow there to be an infinite number of failures, then thespecification and veri-
fication problem again becomes easier; however, such scenarios appear unrealistic. In
many cases, correctness of the protocols depends heavily onthe assumption of a known
number of failures.

So, we are left with the core problem:can we develop deductive temporal techniques
for the verification of parameterised systems where afinite, but unknown, number of
failures can occur?This question is exactly what we address here.

We proceed as follows. Section 2 gives a brief review offirst-order temporal logic
(FOTL) and its properties. In Section 3, we propose two mechanismsfor adapting de-
ductive techniques forFOTL to the problem of finite numbers of failures in infinite-state
systems, and in Section 4 we outline a case study. Finally, inSection 5, we provide con-
cluding remarks.

2 Monodic First-Order Temporal Logics

First-order (linear time) temporal logic (FOTL) is a very powerful and expressive for-
malism in which the specification of many algorithms, protocols and computational
systems can be given at a natural level of abstraction [20]. Unfortunately, this power
also means that, over many natural time flows, this logic is highly undecidable (not
even recursively enumerable). Even with incomplete proof systems, or with proof sys-
tems complete only for restricted fragments,FOTL is interesting for the case of param-
eterised verification: one proof may certify correctness ofan algorithm for infinitely
many possible inputs, or correctness of a system with infinitely many states.

FOTL is an extension of classical first-order logic by temporal operators for a dis-
crete linear model of time (isomorphic toN, being the most commonly used model
of time). Formulae of this logic are interpreted over structures that associate with each
elementn of N, representing a moment in time, a first-order structureMn = (D, In)
with the same non-empty domainD.

The truth relationMn |=a φ in the structureM and a variable assignmenta is de-
fined inductively in the usual way under for the following (sample) temporal operators:

Mn |=a gφ iff Mn+1 |=a φ;
Mn |=a ♦φ iff there existsm ≥ n such thatMm |=a φ;
Mn |=a φ iff for all m ≥ n, Mm |=a φ;
Mn |=a φUψ iff there existsm ≥ n such thatMm |=a ψ and for alln ≤ i < m Mi |= φ;
Mn |=a wφ iff n > 0 andMn−1 |=a φ;
Mn |=a φ iff for all m ≤ n,Mm |=a φ;
Mn |=a �φ iff there exists0 ≤ m < n such thatMm |=a φ;
Mn |=a φS ψ iff there existsm ≤ n such thatMm |=a ψ and for allm < i ≤ n Mi |= φ.



The non-temporal aspects have semantics as follows:

Mn |=a ⊤
Mn |=a P (t1, . . . , tn) iff (In(a(t1)), . . . , In(a(tn))) ∈ In(P )
Mn |=a ¬ϕ iff not Mn |=a ϕ

Mn |=a ϕ ∨ ψ iff Mn |=a ϕ or Mn |=a ψ

Mn |=a ∃xϕ iff Mn |=b ϕ for some assignmentb that may differ from
a only in x and such thatb(x) ∈ D

Mn |=a ∀xϕ iff Mn |=b ϕ for every assignmentb that may differ from
a only in x and such thatb(x) ∈ D

M is amodelfor a formulaφ (orφ is true in M) if there exists an assignmenta such that
M0 |=a φ. A formula issatisfiableif it has a model. A formula isvalid if it is satisfiable
in any temporal structure under any assignment. The set of valid formulae of this logic
is not recursively enumerable. Thus, there was a need for an approach that could tackle
the temporal verification of parameterised systems in acompleteanddecidableway.
This was achieved for a wide class of parameterised systems usingmonodic temporal
logic [15].

Definition 1. A FOTL formula is said to bemonodic if, and only if, any subformula
with its main connective being a temporal operator has at most one free variable.

Thus,φ is calledmonodicif any subformula ofφ of the form gψ, ψ, ♦ψ, �ψ, etc.,
contains at most one free variable. For example, the formulae∀x. ∃y. P (x, y) and
∀x. P (x, c) are monodic, while∀x, y. (P (x, y) ⇒ P (x, y)) is not monodic.

The monodic fragment ofFOTL has appealing properties: it is axiomatisable [24]
and many of its sub-fragments, such as the two-variable or monadic cases, are decid-
able. This fragment has a wide range of applications, for example in spatio-temporal
logics [13] and temporal description logics [3]. A practical approach to proving
monodic temporal formulae is to usefine-grained temporal resolution[17], which has
been implemented in the theorem prover TeMP [16]. It was alsoused for deductive
verification of parameterised systems [12]. One can see thatin many cases temporal
specifications fit into the even narrower, and decidable, monodicmonadicfragment. (A
formula is monadic if all its predicates areunary.)

3 Incorporating Finiteness

When modelling parameterised systems in temporal logic, informally, elements of the
domain correspond to processes, and predicates to states ofsuch processes [12]. For
exampleidle(x) means that a processx is in the idle state,♦∀y. agreement(y) means
that, eventually, all processes will be in agreement, while∃z. inactive(z) means
that there is at least one process that is always inactive. (See [12] for further details.)

For many protocols, especially when fault tolerance is concerned, it is essential that
the number of processes is finite. The straightforward generalisation to infinite numbers
of processes makes many protocols incorrect. Although decidability of monodic frag-
ments holds also for the case of semantics where only temporal structures overfinite



domainsare allowed [15], the proof is model-theoretic and no practical procedure is
known.

We here examine two approaches that allow us to handle the problem of finiteness
within temporal specification:

– first, in 3.1 we consider proof principles which can be used toestablish correctness
of some parameterised protocols;

– then in 3.2 we prove that, for a wide class of protocols, decision procedures that do
not assume the finiteness of a domain can still be used.

3.1 Formalising Finiteness Principles

The language ofFOTL is very powerful and one might ask if a form of finiteness can be
defined inside the logic. We have found the following principles (which are valid over
finite domains, though not in general) useful when analysingthe proofs of correctness
of various protocols and algorithms specified inFOTL (recall:�ϕ meansϕ wastrue in
the past):

Fin1 (deadline axiom): ♦(∀x. (♦P (x) → �P (x)))

Fin2 (finite clock axiom): [∀x. (P (x) → g ¬P (x)] ⇒ [♦ (∀x. ¬P (x))]

Fin3 (stabilisation axiom):

[ (∀x. (P (x) → gP (x))] ⇒ [♦ (∀x. ( gP (x) → P (x))]

Actually theFin1 principle is a (more applicable) variant of the intuitivelyclearer
principle[∀x.♦P (x)] ⇒ [♦∀x.�P (x)] which is also valid over finite domains.

These principles have the following informal motivation. The deadline axiom prin-
ciple,Fin1, states that there is a moment after which “nothing new is possible”; that
is, if, after the deadline,P (x) becomes true for some domain elementa ∈ D, there
already was a moment in the past such thatP (x) was true ona at that moment. The
final clock axiom,Fin2, states that if the moments when the predicateP (x) becomes
true on some domain element are interpreted as clock ticks, the clock will eventually
stop ticking. Finally, the stabilisation principle,Fin3, states that if some domain area,
whereP (x) is true, is growing then it will stop growing at some point. Itcan be easily
seen that all these principles hold true in arbitrary finite domain structures.

Now, considerFini for i = 1, 2, 3 as axiom schemes which can be added to a
reasonableaxiomatisation ofFOTL (call this,AxFOTL) in order to capture, at least
partially, “finite reasoning”. By a ‘reasonable’AxFOTL, we mean that we assume some
Hilbert-style finitary axiomatic system forFOTL extending a standard, non-temporal,
predicate logic axiomatisation by, at least, the axiom schemata presented in Fig. 1.

We show that all these three principles are actually equivalent modulo any reason-
ableAxFOTL (i.e. they can be mutually derived). The principle (an axiomscheme)F1 is

said to be derivable fromF2 if, for every instanceα of F1, we haveAxFOTL + F2 ⊢ α.
We will denote it simplyAxFOTL + F2 ⊢ F1.

Theorem 1 The principlesFin1, Fin2 andFin3 are mutually derivable.



Future time axioms:

F0. ⊢ ϕ→ ϕ

F1. ⊢ f¬ϕ↔ ¬ fϕ

F2. ⊢ f(ϕ→ ψ) → ( fϕ→ fψ)
F3. ⊢ (ϕ→ ψ) → ( ϕ→ ψ)
F4. ⊢ ϕ→ fϕ

F5. ⊢ (ϕ→ fϕ) → (ϕ→ ϕ)
F6. ⊢ (ϕUψ) ↔ ψ ∨ (ϕ ∧ f(ϕUψ))
F7. ⊢ (ϕUψ) → ♦ψ

Past time axioms:

P1. ⊢ ¬ v¬ϕ→ vϕ

P2. ⊢ v(ϕ→ ψ) → ( vϕ→ vψ)
P3. ⊢ ϕS ψ ↔ ψ ∨ (ϕ ∧ ¬ v¬(ϕS ψ))
P4. ⊢ vfalse

Mixed axiom:

M8. ⊢ ϕ→ f vϕ

Interaction axioms:

I1. ⊢ ∀x. ( fϕ(x)) → f(∀x. φ(x))
I2. ⊢ ∀x. ( vϕ(x)) → v(∀x. φ(x))

Fig. 1.AxFOTL: Axioms ofFOTL (all except the Interaction Axioms are taken from [18])



Proof

1. AxFOTL + Fin1 ⊢ Fin2.

Assume∀x. (P (x) → g ¬P (x)) (∗), which is the assumption ofFin2.

Consider thenFin1 which is♦(∀x.(P (x) ∨ ♦P (x) → �P (x))).

In Fin1 assume♦P (c) for an arbitraryc inside of♦(. . .), then we have�P (c)
which together with (∗) gives¬P (c) and contradiction.

That means, we have♦(∀x.¬(P (x) ∨ ♦P (x))) which implies♦ (∀x.¬P (x)).

2. AxFOTL + Fin2 ⊢ Fin3.

DefineQ(x) to be¬P (x) ∧©P (x).

Assume (∀x.(P (x) → ©P (x))) (∗∗).

Then we have∀x. (Q(x) → © ¬Q(x)) from the definition ofQ(x) and (∗∗).

Applying Fin2 we get♦ (∀x. ¬Q(x)) which is equivalent to♦ (∀x.¬ ©
P (x) ∨ P (x)) and to♦ (∀x. (©P (x) → P (x))).

3. AxFOTL + Fin3 ⊢ Fin1.

Applying to a valid formula, provable inAxFOTL, ∀x(�P (x) → ©�P (x)) the
principleFin3 we get

♦ (∀x.(©�P (x) → �P (x))) .

This implies [18]♦ (∀x. ¬(♦P (x)) ∧ ¬�P (x))).

After propositionally equivalent transformations we get♦ (∀x. (♦P (x)) →
�P (x)), which isFin1.

This theorem shows that all three principles are equivalentand so can be used inter-
changeably in the proofs. However, the differing syntactical forms may make some
principles more suitable fornatural proofs, yet may affect the efficiency of the auto-
mated proof search using these principles.

3.2 Eventually Stable Protocols

In Section 3.1 we highlighted some deduction principles capturing the finiteness of the
domain. Alternatively, we can consider a family of protocols which terminate after a
certain (but unknown) number of steps. For example, if everyprocess sends only a finite
number of messages, such protocol will eventually terminate. Consensus protocols [19],
distributed commit protocols [6], and some other protocolsfit into this class. Temporal
models of specifications of such terminating protocols willeventually stabilise, that
is, the interpretationsIn will be the same for sufficiently largen. We show that for
theseeventually stablespecifications satisfiability over finite domains coincideswith
satisfiability over arbitrary domains.

LetP be a set of unary predicates. Thestabilisation principle w.r.t.P is the formula:

StabP = (∀x
∧

P∈P

[P (x) ≡ gP (x)]).



Informally, if StabP is true at some moment of time, from this moment the interpreta-
tion of predicates inP does not change. Letφ be a monodic temporal formula. LetP
be the set of unary predicates occurring inφ. Then the formula

φStab = φ ∧ ♦Stab

is called aneventually stable formula. We formulate the following proposition for
monodic monadic formulae; it can be extended to other monodic classes obtained by
temporalisation by renaming[8] of first-order classes with the finite model property.

Proposition 1. Let φ be a monodic monadic formula. The eventually stable formula
φStab is satisfiable in a model with a finite domain if, and only if,φStab is satisfiable in
a model with an arbitrary domain.

This proposition implies that if a protocol is such that it can be faithfully represented
by an eventually stable formula, correctness of such protocol can be established by a
procedure that doesnot assume the finiteness of the domain.

Proof For simplicity, we prove the proposition for formulae in Divided Separated Nor-
mal Form (DSNF) [8] only. The proof can be extended to the general case by the con-
sideration of sub-formulae ofφ.

A monodic temporal problemP in divided separated normal form (DSNF)is a
quadruple〈U , I,S, E〉, where:

1. the universal partU and the initial partI are finite sets of first-order formulae;
2. the step partS is a finite set of clauses of the formp ⇒ gq, wherep andq are

propositions, andP (x) ⇒ gQ(x), whereP andQ are unary predicate symbols
andx is a variable; and

3. the eventuality partE is a finite set of formulae of the form♦L(x) (a non-ground
eventuality clause) and♦l (a ground eventualityclause), wherel is a propositional
literal andL(x) is a unary non-ground literal with variablex as its only argument.

With each monodic temporal problem〈U , I,S, E〉 we associate theFOTL formula
I ∧ U ∧ ∀xS ∧ ∀xE . When we talk about particular properties of a temporal
problem (e.g., satisfiability, validity, logical consequences, etc) we refer to properties
of this associated formula. Every monodic temporal formulacan be transformed into
divided separated normal form (DSNF) in a satisfiability equivalence preserving way
with only linear growth in size [17].

Let P = 〈U , I,S, E〉 be a monodic temporal problem in DSNF. We only have to
show that ifPStab has a model,M = M0,M1, . . ., with an infinite domain, it also
has a model with a finite one. LetN be such thatMN |= Stab. Consider now the
temporal structureM′ = M0,M1, . . .MN−1,MN ,MN ,MN , . . . (i.e. from moment
N the structure does not change). It can be seen thatM′ is a model forP.

For every predicate,P , occurring in P, we introduceN + 1 new predicates
P 0, P 1, . . . , PN of the same arity. Letφ be a first-order formula in the language of
P. We denote by[φ]i, 0 ≤ i ≤ N , the result of substitution of all occurrences of predi-
cates inφ with their i-th counterparts; (e.g.,P (x1, x2) is replaced withP i(x1, x2)).



– Let φI =
∧

{[φ]0 | φ is in I}

– Let φU =
∧

{
N
∧

i=0

[φ]i | φ is in U}.

– Let φS =
∧

{
N−1
∧

i=0

(

∀x(P i(x) ⇒ Qi+1(x)
)

| P (x) ⇒ gQ(x) is in S} ∧
∧

{∀x(PN (x) ⇒ QN (x) | P (x) ⇒ gQ(x) is in S}

– Let φE =
∧

{[∀xL(x)]N | L(x) is in E}

LetφFO = φI ∧φU ∧φS ∧φE . Note thatφFO does not contain any temporal operators.
Consider now a first-order structureN with the same domainD asM, interpreting
constants in the same way, and such thatN |= P i(a1, . . . , an), for somea1, . . . , an ∈
D, if, and only if,Mi |= P (a1, . . . , an). It can be seen that thatN |= φFO. SinceP is
a monodic monadic problem,φFO is a monadic first-order formula, which has a model
with a finite domain. Reversing the process, one can construct a model forP with a
finite domain. 2

4 Case Study: FloodSet Protocol

Next, we provide an example of how both methods described in Section 3 (explicit
finiteness principles, and stabilisation principle for protocols with finite change) can be
used for the proof of correctness of a protocol specified in monodicFOTL.

The setting is as follows. There aren processes, each having aninput bit and an
output bit. The processes work synchronously, run the same algorithm and usebroad-
castfor communication. Any message sent by a non-faulty processis instantaneously
delivered to all other processes. Some processes may fail and, from that point onward,
such processes do not send any further messages. Note, however, that the messages sent
by a processin the moment of failuremay be delivered toan arbitrary subsetof the
processes. Crucially, there is afinite bound,f , on the number of processes that may
fail.

The goal of the algorithm is to eventually reach an agreement, i.e. to produce an
output bit, which would be the same for all non-faulty processes. It is required also that
if all processes have the same input bit, that bit should be produced as an output bit.

This is a variant ofFloodSet algorithm with alternative decision rule(in terms of
[19], p.105) designed for solution of the Consensus problemin the presence of crash
(or fail-stop) failures, and the basic elements of the protocol (adapted from [19]1) are
as follows.

– In the first round of computations, every process broadcastsits input bit.
– In every later round, a process broadcasts any valuethe first time it sees it.
– In every round the (tentative) output bit is set to the minimum value seen so far.

1 In [19], every processknowsthe boundf in advance and stops the execution of the protocol
afterf + 2 rounds, producing the appropriate output bit. We consider the version where the
processes do not knowf in advance and produce atentative output bitat every round.



The correctness criterion for this protocol is that, eventually (actually, no later than in
f + 2 rounds) the output bits of all non-faulty processes will be the same.

Claim. The above FloodSet algorithm and its correctness conditions can be specified
(naturally) within monodic monadic temporal logic withoutequality, and its correctness
can be proved in monodic monadic temporal logic, using the abovefinite clock axiom.

We give a larger specification below, but first note the keys points concerning this:

1. Each process (s) must be categorised as one of the above types:
(∀x(Normal(x) | Failure(x) | Faulty(x)))

here the symbol| means that exactly one of the predicatesNormal(x),
Failure(x), andFaulty(x) is true.

2. If we see a ‘0’ (the process has this already, or receives a message with this value)
then we output ‘0’:

(∀x(¬Faulty(x) ∧ Seen(x, 0) → gOutput(x) = 0))
3. If we have not seen a ‘0’ but haveseen a ‘1’, then we output ‘1’:

(∀x. (¬Faulty(x) ∧ ¬Seen(x, 0) ∧ Seen(x, 1) → gOutput(x) = 1))
4. The condition to be verified, namely that eventually all (non faulty) processes agree

on the bit ‘0’, or eventually all agree on the bit ‘1’:

♦((∀x.¬Faulty(x) ⇒ Output(x) = 0)∨ (∀x.¬Faulty(x) ⇒ Output(x) = 1))

We do not include the whole proof here, but will reproduce sample formulae to give the
reader a flavour of the specification and proof.

4.1 Specification

A FOTL specification of the aboveFloodSet algorithmϕ is given as a conjunction of
the following formulae, divided for convenience, into fourgroups as follows

1. RULES:
(1stRound→ ©¬1stRound)
(∀x. (Failure(x) → fFaulty(x)))
(∀x. (1stRound ∧Normal(x) → f(Send(x, Input(x))∧ Seen(x, Input(x)))))
(∀x. (1stRound ∧ Failure(x) → f(Send Failure(x, Input(x)) ∧

Seen(x, Input(x)))))
(∀x.∀y. (¬1stRound ∧ Normal(x) ∧ Received(x, y) ∧ ¬Seen(x, y) →

fSeen(x, y) ∧ Send(x, y)))
(∀x.∀y. (¬1stRound ∧ Failure(x) ∧ Received(x, y) ∧ ¬Seen(x, y) →

f(Seen(x, y) ∧ Send Failure(x, y))))
(∀x.∀y. (Faulty(x) → f(¬Send(x, y) ∧ ¬Send Failure(x, y))))
(∀x.∀y. (¬1stRound ∧ ¬Faulty(x) ∧ (¬Received(x, y) ∨ Seen(x, y)) →

f(¬Send(x, y) ∧ ¬Send Failure(x, y))))
(∀x. (¬Faulty(x) ∧ Seen(x, 0) → fOutput(x) = 0))
(∀x. (¬Faulty(x) ∧ ¬Seen(x, 0) ∧ Seen(x, 1) → fOutput(x) = 1))

2. FRAME CONDITIONS :
(¬1stRound → ©¬1stRound)



(∀x. (Faulty(x) → fFaulty(x)))
(∀x. (¬Faulty(x) ∧ ¬Failure(x) → f¬Faulty(x)))
(∀x.∀y. (Seen(x, y) → fSeen(x, y)))

3. CONSTRAINTS :
(∀x.∀m. (Send(x,m) → ∀y.Received(y,m)))
(∀x.∀m. (Received(x,m) → ∃y(Send(y,m) ∨ Send Failure(y,m))))
(∀x.∀m.¬(Send(x,m) ∧ Send Failure(x,m)))
(∀x. (Normal(x) | Failure(x) | Faulty(x)))

(∀x. (Output(x) = 0 ∨ Output(x) = 1))
(∀x. (Input(x) = 0 ∨ Input(x) = 1))
(∀x.∀y. (Send(x, y) ∨ Received(x, y) ∨ Seen(x, y)) → (y = 0 ∨ y = 1))

4. I NITIAL CONDITIONS :
(start ⇒ 1stRound)
(start ⇒ ∀x. Normal(x))
(start ⇒ ∀x.∀y. ¬Seen(x, y))
(start ⇒ ∀x. (Input(x) = 0 ∨ Input(x) = 1))

Note. One can get rid of all equalities in this example by using finiteness of the set
of values, which are supposed to be second argument ofSeen( , ), Send( , ) and
Send Failure( , ).

Notice that the temporal specification uses, among others, the predicatesNormal( )
to denote normal operating processes,Failure( ) to denote processes experiencing
failure (at some point of time),Faulty( ) for the processes already failed. There are
also predicates such asSeen( , ) specifying the effect of communications. Having
these, it is straightforward to write down the temporal formulae describing the above
protocol and correctness condition (i.e. (4) above). In theproof of correctness below,
thefinite clock axiom has to be instantiated to theFailure(x) predicate (i.e. replace
P byFailure in Fin2).

4.2 Refutation

In this section we will consider the actual proof concerningthe correctness of the above
specification with respect to the conditions we have presented. We will not present the
full proof, but will provide an outline indicating how the major steps occur.

First of all, the clausal temporal resolution approach is a refutation procedure and
so we add the negation of the required condition (i.e.¬ψ) and attempt to derive a con-
tradiction. We note that¬ψ is

((∃x¬Faulty(x) ∧Output(x) 6= 0)

∧

(∃x¬Faulty(x) ∧Output(x) 6= 1))

We translate formulae such as ‘Output(x) 6= 0’ to ‘¬¬Output(x)’ since the only
values allowed are ‘0’ and ‘1’. Consequently the two temporal formulae derived from
¬ψ are:



C1: (∃x¬Faulty(x) ∧Output(x))
C2: (∃x¬Faulty(x) ∧ ¬Output(x))

Frame conditions and the finite clock axiom applied for theFailure predicate give

C3: ♦ (∀x.¬Failure(x))

FromC1 andC3 we have

C4: ♦ (∀x.¬Failure(x) ∧ ∃x(¬Faulty(x) ∧Output(x)))

FromC4 and constraints we now have

C5: ♦ (∀x.¬Failure(x) ∧ ∃x(Normal(x) ∧Output(x)))

By rules concerningOutputandC5 we get

C6: ♦ (∃xNormal(x) ∧ wSeen(x, 0))

Next, let us note a useful variant of the induction axiom called theminimal element
principle:

∀x̄([♦ϕ(x̄)] → [♦(ϕ(x̄) ∧ w ¬ϕ(x̄))])

By the minimum element principle

C7: ♦ (∃xNormal(x) ∧ �(Seen(x, 0) ∧ w ¬Seen(x, 0)))

By rules fromC7

C8: ♦ (∃xNormal(x) ∧ �( wReceived(x, 0)))

By rules fromC8

C9: ♦ (∃xNormal(x) ∧ �( w(Received(x, 0) ∧ ¬Seen(x, 0))))

By rules fromC9

C10: ♦ (∃xNormal(x) ∧ �(Normal(x) ∧Received(x, 0) ∧ ¬Seen(x, 0))))

By rules fromC10

C11: ♦ (∃xNormal(x) ∧ �(Send(x, 0)))

By rules fromC11

C12: ♦ (�∀x. Seen(x, 0)))

FromC12

C13: ♦ (∀x. Seen(x, 0))

FromC2 and rules

C14: (∃y¬Seen(y, 0))

Finally, fromC13 andC14 we get a contradiction.
2



4.3 Eventual Stabilisation of FloodSet Protocol

One may also verify theFloodSetprotocol using the eventual stabilisation principle
from Section 3.2. To establish the applicability of the principle one may use the fol-
lowing arguments: every process can broadcast at most twice, and taking into account
finiteness of both the numbers of processes and of failures, one may conclude that even-
tually the protocol stabilises. Note that such an analysis only allows us to conclude that
the protocol stabilises, but its properties still need to beproved. Letφ be a temporal
specification of the protocol. Taking into account the stabilisation property, the proto-
col is correct iff(φ ∧ ¬ψ)Stab is not satisfiable over finite domains. By Proposition 1,
there is no difference in satisfiability over finite and general domains for such formulae
and so one may use theorem proving methods developed for monadic monodic temporal
logics over general models to establish this fact. In this case, the proof follow(s) exactly
the form of proof presented in the previous section, with theexception that statement
C3 : ♦ (∀x.¬Failure(x)) is obtained in a different way. One of the conjuncts of the
stabilisation principle with respect toφ ∧ ¬ψ is

♦ (∀xFailure(x) ≡ gFailure(x) .

Together with the rule

(∀x. (Failure(x) → gFaulty(x)))

and the constraint

(∀x. (Normal(x) | Failure(x) | Faulty(x)))

this impliesC3, as required.

5 Concluding Remarks

In this paper we have introduced two approaches for handlingthe finiteness of the do-
main in temporal reasoning.

The first approach uses explicit finiteness principles as axioms (or proof rules), and
has potentially wider applicability, not being restrictedto protocols with the stabilisa-
tion property. On the other hand, the automation of temporalproof search with finiteness
principles appears to be more difficult and it is still largely an open problem.

In the approach based on the stabilisation principle, all “finiteness reasoning” is
carried out at the meta-level and essentially this is used toreduce the problem formu-
lated for finite domains to the general (not necessarily finite) case. When applicable,
this method is more straightforward for implementation andpotentially more efficient.
Applicability, however, is restricted to the protocols which have stabilisation property
(and this property should be demonstrated in advance as a pre-condition).

Finally, we briefly mention some future work. Automated proof techniques for
monadic monodicFOTL have been developed [8, 17] and implemented in the TeMP
system [16], yet currently proof search involving the finiteness principles requires im-
provement. Once this has been completed, larger case studies will be tackled. The tech-
niques themselves would also benefit from extension involving probabilistic, real-time
and equational reasoning.
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