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Abstract. Interaction in a multi-agent system is susceptible to failure.
A rigorous development of a multi-agent system must include the treat-
ment of fault-tolerance of agent interactions for the agents to be able
to continue to function independently. Patterns can be used to capture
fault-tolerance techniques. A set of modelling patterns is presented that
specify fault-tolerance in Event-B specifications of multi-agent interac-
tions. The purpose of these patterns is to capture common modelling
structures for distributed agent interaction in a form that is re-usable
on other related developments. The patterns have been applied to a case
study of the contract net interaction protocol.

1 Introduction

A fault-tolerant system is one that can continue to function as it was designed
in the presence of faults [1]. Fault-tolerance can be introduced into the design of
a software system.

Multi-agent systems are systems of distributed software entities that cooper-
ate or compete to achieve individual or shared goals [2]. Agents encapsulate their
behaviour and are motivated by their internal goals. The agents can individu-
ally respond, pro-actively and reactively, to changes in their environment [3]. The
agent metaphor is one approach to creating software systems that are capable
of solving distributed problems.

Formal methods are the application of mathematics to model and verify
software or hardware systems [4]. Event-B is a mathematical approach for de-
veloping formal models of distributed systems that can be used to analyse and
reason about the system [5]. Using a formal method to model a system results in
a specification of the system that is unambiguous and can be formally verified.
The model can be analysed for flaws before the system based on the model is
developed [6].

Patterns are intended to make software engineering easier by capturing the
expertise of experienced software developers and making it available in a manner
∗
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that can be re-applied in other developments [7]. The purpose of a pattern is
to capture structures and decisions within a design that are common to similar
modelling and analysis tasks. They can be re-applied when undertaking similar
tasks to in order reduce the duplication of effort.

This paper presents a set of fault-tolerance patterns that have been developed
to help specify fault-tolerance in Event-B models of multi-agent systems. A case
study based on a specification of the contract net interaction protocol by the
Foundation for Intelligent Physical Agents (FIPA) [8] illustrates the application
of the patterns.

This paper is structured as follows: Section 2 examines the aspects of multi-
agent systems that require fault-tolerance. Section 3 provides an overview of
Event-B. Section 4 examines how fault-tolerance patterns can be used in Event-
B. Section 5 introduces the contract net case study. The following sections de-
scribe each of the patterns in turn. Related work is then examined followed by
a conclusion with an outline of possible future work.

2 Fault-Tolerance in Agent Interaction

A fault-tolerant system is one that can continue to function as it was designed
in the presence of faults [1]. A multi-agent system has to be able to cope with
the faults that can occur in any distributed system.

Fault-tolerance in distributed systems requires that the system can cope with
faults in communication and faults in the behaviour of the distributed compo-
nents. The system must be able to continue to function if a fault leads to a
failure in communication between nodes or to a node ceasing to communicate.
The system must also be able to cope if a node in the system is prevented from
completing a task that it has been delegated.

In this paper we understand a multi-agent system [2] as a grouping of agents
that either cooperate or compete in order to fulfill individual or collective goals.
Multi-agent systems require many dynamic interactions to be able to function.
The agents in the system behave both rationally and autonomously. A fault-
tolerant multi-agent system needs to be able to cope with this behaviour. The
agent’s autonomy can make their behaviour difficult to predict. Rational agents
will stop pursuing a goal if they believe that the goal has already been achieved
or that it cannot be achieved. An agent that is autonomous is not required
to complete any tasks requested by other agents. The task may conflict with
its existing goals and, therefore, not be desirable for the agent to complete.
The heterogeneity and dynamic interactions of a multi-agent system may lead
to agents receiving messages that they do not understand or that are out of
expected order. These are not always faults in the individual agents, but they
are faults in the interactions of the system. The agents must be able to handle
such faults in their interactions and communicate their reactions to these faults.

Development using formal methods can help to ensure correctness by con-
struction [9]. Using formal methods does not guarantee that the developer has
not ommitted some aspects of system behaviour from the model that may lead to
failure. The patterns presented in this paper add events and variables to Event-B



specifications of multi-agent systems to provide tolerance of possible faults that
can occur because of the distributed and rational nature of multi-agent systems.
The faults dealt with by the patterns are an excessive delay in response, a refusal
in response to a request, the request to cancel a previous request, the failure to
complete a committed task and the receipt of an unexpected communication.

3 Event-B

Event-B is a mathematical approach for developing formal models of systems [10].
An Event-B model is constructed from a collection of modelling elements. These
elements include invariants and events with guards and actions. The modelling
elements have attributes expressed using set theory and predicate logic. The
development of an Event-B model begins with abstraction and continues with
refinement of the abstraction. The abstract machine specifies the initial require-
ments of the system. The refinement of a model is the process of adding more
detail to a model. The refinement of an Event-B abstract machine can be carried
out in several steps. More detail is added to the model at each step. Refinement
allows models at different abstraction levels to be related. Development is gener-
ally, but not exclusively, top-down. Refinement may highlight errors or elements
missing from the model that require changes to be made to abstract models.

The focus on atomic events in Event-B creates a representation of a reactive
system [11]. The guard of an event represents the necessary conditions on the
state of the system for the event to be triggered. When the guard is true the
actions of the event may be executed, possibly changing the state and allowing
another event to be triggered.

Event-B is designed for modelling distributed systems [5]. Event-B allows
new events to be added and single events to be refined into multiple concrete
events. This allows a system behaviour to be modelled as a single atomic event
and then refined to a set of events that separately model the behaviour. This
refinement can model individual processes executing in parallel to perform the
behaviour of an abstract event or different events that result in the same actions
as the abstract event. Refinement ensures that refined models are consistent
with the abstract machine. Creating models of reactive and distributed systems
makes Event-B an appropriate formalism as a basis for modelling multi-agent
systems.

To create a textual representation of the Event-B models in this paper the
events will be presented using the keywords ANY, WHERE, THEN and END to struc-
ture the model. The event variables of an event will be written between ANY and
WHERE. The guards of the event will be written between WHERE and THEN and the
actions of the event will be written between THEN and END.

4 Modelling Patterns for Fault-Tolerance

Fault-tolerance is not necessarily a feature of a system that is appropriate to
model in detail at the most abstract level. It is often a part of the communi-
cation infrastructure or a component of individual nodes and, therefore, will be
modelled in refinement.



Each pattern includes a description, interaction diagram and Event-B ex-
tracts from the contract net case study. The description for each of the patterns
includes a name, fault statement and tolerance pattern statement. The descrip-
tion can be applied to any event-based specification. The fault statement is the
potential fault for which the application of the pattern will model a solution.
The tolerance pattern statement describes the steps that can be taken to solve
the problem in an event-based specification.

The interaction diagrams show how the fault-tolerance techniques can be
included in the interactions between the different agent roles. Several of the
interaction diagrams show the variations required for one-to-many interaction.

The patterns also include Event-B extracts from a case sutdy that how how
the patterns can be applied to a development. These examples make the patterns
specific to Event-B development. The other elements of the pattern are more
generic and could be suitable for other event-based formal methods.

The fault-tolerance techniques modelled by the patterns will help an agent to
continue to provide a service when a fault occurs within a particular interaction.
If a tolerated fault occurs in a conversation between two agents an agent may
fail to fulfill its goal, but the fault should not prevent the agent from performing
its role in another conversation.

The set of fault-tolerance patterns presented in this paper model solutions
for faults that can arise in multi-agent systems. This includes faults that are
found in ordinary distributed systems. The Timeout pattern prevents an agent
from indefinitely waiting for a communication. This allows the agent to cope
with faults in either the communication medium, or other nodes or agents in
the system. The failure of a node to complete a delegated task is modelled by
the Failure pattern. A rational agent altering its goals is modelled by the Cancel
pattern. The Refuse pattern allows the system to cope with an agent deciding
not to participate in an interaction. The Not-Understood pattern models the
reaction of agents to unexpected communications. With the patterns specified
in an Event-B development the developer can then refine the models to include
more detail on how the system or individual agents will manage these faults.

Applying a Pattern

The patterns can be applied to an existing Event-B development of a multi-
agent system to introduce the fault-tolerance techniques to the model. Figure 1
shows how the patterns can be applied to the refinement chain of an existing
Event-B development i.e., an abstract model and its refinement. The events
and variables that model the abstraction of the pattern can be added to the
abstract machine. The events and variables that model the concrete pattern can
then be added to a refinement of the abstract machine. The developer can decide
where in the refinement chain they want to extend a refinement model to include
the concrete pattern. Several refinement steps may be required for refinements
between the abstract machine and the model extended by the concrete pattern.
The extend relationship requires the addition to, or modification of, the events
and variables in the model for the pattern to be included. If the events and
variables required for the pattern already exist in the model no additions or
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modifications are necessary. The Event-B examples include gluing invariants that
relate the abstract variables to the concrete variables. These can potentially be
re-used in the extended refinement chain to help the developer specify the refines
relationship.

The Event-B extracts include an abstraction of the pattern and a concrete
pattern. Pattern extracts are demonstrated on the basis of the contract net case
study. The abstraction of the pattern will need to be added to the Event-B
abstract machine. When there are several refinement steps between the abstract
machine and the refinement extended by the concrete pattern it will be necessary
to make refinement steps to the intermediate models.

Not including the concept of refinement in an Event-B modelling pattern
would limit the usefulness of the pattern for providing a complete solution. In-
cluding a complete refinement chain may confuse the developer should their re-
finement chain differ from the one provided. Not providing an abstraction may
make it difficult for the developer to find an appropriate abstraction. This ap-
proach would only provide an incomplete solution and may lead to the incorrect
application of the pattern.

The patterns have each been applied in separate developments to the initial
chain. This ensures that there is no dependency between the patterns and, there-
fore, the order in which they are applied has no importance. All of the patterns
have also been applied sequentially to the initial chain. This is to provide assur-
ance that there are no conflicts between the patterns. Figure 2 illustrates how a
collection of patterns can be used to extend an Event-B refinement chain. Ex-
tending the Initial Chain by applying Patterni produces Chain2 and applying
Patternj by further extending Chain2 produces Chain3. Patternj could be ap-
plied before Patterni to produce the same result (Chain3). A possible direction
for future work is to find a method to prove the orthogonality of the patterns.

5 Case Study

This section describes the contract net interaction protocol. A simplified version
of the protocol has been modelled as an Event-B refinement chain. Each of the



patterns have been applied to the case study models. The contract net case study
involves multiple participants. The developer may need to adapt the patterns
for models of one-to-one interaction.

The contract net interaction protocol is a distributed negotiation process [12].
The goal of the contract net is for the initiating agent to find an agent, or group
of agents, that offer the most advantageous proposal to carry out a required
task. The initiator of the protocol advertises the existence of a task that it needs
completing by broadcasting a call for proposals. The agents that receive the
call for proposals can place a bid to complete the task by sending a proposal.
Participants in the protocol are committed to the bids that they propose. When
the initiator selects a bid or a group of bids the participants are informed of the
decision and those selected will complete the task. The contract is completed
when the participants inform the initiator that the task is completed. The case
study has been developed using the FIPA specification of the contract net [8].

The development presented here includes an abstract model and one re-
finement model. The abstract model models conversations between agents and
the refinement introduces the agents involved in the conversation to the model.
There will be one initiator agent and one or more other agents participating in
the conversation. The events of the abstract model show the behaviour of the
system moving the conversation to different states to model the progression of
the interaction between the agents. The refinement model shows the agents in
the system and links the agents to the conversations in which they are involved
and moves this relationship between the different states. Initially only successful
conversations of the contract net interaction protocol are modelled. The abstract
model shown in Figure 3 includes four variables that represent states that the
conversation will move through. The set CONVERSATION is a set of abstract
values that represent the type for conversations. The cfp variable represents the
state after a call for proposals has been initiated by an agent. The responded
variable represents the participating agents responding to the call for proposals.
The selected variable represents the initiator choosing one or more proposals to
accept. The informed variable models the state where the selected agents have
informed the initiator of the successful completion of the task. The variables are
not modelled as disjoint sets. Instead, the order of the conversation is enforced
by specifying the variable for each state as a subset of the previous state.

The events of the abstract machine move the conversation through the dif-
ferent states as the conversation progresses. The callForProposals event adds a
conversation to the cfp state. The respond event takes a conversation that is
in the cfp state and puts it in the responded state. The responded event occurs
once and represents sufficient agents sending proposals. The select event takes
a conversation that is in the responded state and adds it the the selected state.
The inform event takes a conversation that is in the selected state and adds it
to the informed state to complete the conversation.

The refinement of the abstract model incorporates the interaction between
the agents involved in the conversation. The invariants for the refinement model
are shown in Figure 4. The variables of the model represent messages being sent



INVARIANTS

cfp ⊆ CONVERSATION
responded ⊆ cfp
selected ⊆ responded
informed ⊆ selected

EVENTS

callForProposals respond

ANY c WHERE ANY c WHERE

c ∈ CONVERSATION c ∈ cfp
c /∈ cfp c /∈ responded

THEN THEN

cfp := cfp ∪ {c} responded := responded ∪ {c}
END END

select inform

ANY c WHERE ANY c WHERE

c ∈ responded c ∈ selected
c /∈ selected c /∈ informed

THEN THEN

selected := selected ∪ {c} informed := informed ∪ {c}
END END

Fig. 3: Abstract machine of the initial chain

cfpS , proposeS , acceptS , rejectS , informS ∈ CONVERSATION ↔ AGENT,

cfpR ⊆ cfpS, proposeR ⊆ proposeS, acceptR ⊆ acceptS,
acceptS ⊆ proposeR, informR ⊆ informS, rejectR ⊆ rejectS,
informS ⊆ acceptR, proposeS ⊆ cfpR,

selected = dom(acceptS ∪ rejectS), cfp = dom(cfpS)

Fig. 4: Invariants for the refinement of the initial chain

and received by the agents in the system. The variables that represent a mes-
sage being sent are suffixed with an ‘S’ and those that represent a message being
received are suffixed with an ‘R’. The conversation is between multiple agents
and so the variables are specified as relationships between a set of conversations
and a set of agents. For example, c 7→ a ∈ cfpS means that agent a has been
sent a call for proposals message within conversation c and c 7→ a ∈ cfpR means
that agent a has received a call for proposals message within conversation c. A
message must be sent before it can be received and this is modelled by specifying
a subset relationship between the sent variables and the received variables, e.g.
cfpR ⊆ cfpS . Some of the variables from the abstract machine are replaced by
the message variables in the refinement. The last two invariants are the gluing
invariant and specify the refinement relationships between the abstract variables
that represent the state of the conversation and the concrete variables that model
messages being broadcast. The responded and informed variables from the ab-
stract model represent states that are internal to the agents. Because they are
not included in a conversation they are not refined by relationships between the
conversation and agent and no gluing invariant is required.

The events of the refinement are shown in Figure 5. The sendCfp event re-
fines the abstract callForProposals event. It models the broadcast of a call for
proposals message from agent a to all other agents (AGENT \ {a}) by a set of



relationships, as, between a conversation and the agents in the system and adds
it to the cfpS variable. The receiveCfp event models a message being received
by an agent by selecting a relationship, c 7→ a, that is in the cfpS variable and
adding it to the cfpR variable. The sendProposal event can occur when there is a
relationship in the cfpR variable and the proposal is sent when the relationship
is added to the proposeS variable. The receiveProposal event adds a relationship
that is in the proposeS variable to the proposeR variable. The responded event is
a refinement of the abstract respond event and represents the initiator receiving
the required responses. The select event broadcasts two different messages. One
group of agents, as, will receive an accept message in response to their proposal
and another group of agents, ar , will receive a reject message. The receiveAccept
and receiveReject events represent those messages being received by the partic-
ipants. The event and variables that model the rejection, receiveReject, rejectS
and rejectR can be ommitted, as they do not affect the rest of the interaction,
but in a multi-agent system it may be useful for an agent to know that it has
been rejected, so it can adapt its behaviour in the future. The sendInform event
models an agent that has received an accept message, sending an inform message
following the successful completion of their task. The receiveInform event repre-
sents this message being received. The final informed event refines the abstract
inform event and models the initiator concluding that the contract has been
successfully completed following the receipt of at least one inform message.

6 Timeout Pattern
Name:Timeout
Fault: An agent may become blocked during a conversation whilst waiting for
replies.
Tolerance Pattern: Specify a state for the conversation that models a dead-
line passing. Add an event to the specification that will change the state of the
conversation from before the deadline to after the deadline. Split the event for
receiving the replies into two. One event will have a guard that is true before
the deadline and one will have a guard that is true after the deadline. The
action of the event after the deadline will inform agents of their failure to meet
the deadline.

In the case of a communication failure, or the failure of another agent or node
in the system, an agent that continues to wait for a response to a communication
may wait an excessively long time or may never receive the reply. This is not
practical for most systems, especially a multi-agent system that may be expected
to be able to adapt under such circumstances. An agent should be able to decide
to either continue the conversation without waiting for a response or to resolve
its goal in another way, when it becomes likely that a response will not be
forthcoming. An agent may be required to make a decision on how long it should
wait depending on its goals for the efficiency of its current task.

The Timeout pattern prevents an agent from becoming blocked whilst wait-
ing for a reply. It does this by modelling a deadline after which the behaviour
of the system changes. The interaction diagrams in Figure 6 show the messages
that are exchanged between the roles involved in the conversation.



sendCfp REFINES callForProposals receiveCfp

ANY c, as, a WHERE ANY c, a WHERE

c ∈ CONVERSATION c 7→ a ∈ cfpS
c /∈ dom(cfpS) c 7→ a /∈ cfpR
as ∈ CONVERSATION ↔ AGENT THEN

a ∈ AGENT cfpR := cfpR ∪ {c 7→ a}
dom(as) = {c} END

ran(as) = AGENT \ {a}
THEN

cfpS := cfpS ∪ as
END receiveProposal

sendProposal ANY c, a WHERE

ANY c, a WHERE c 7→ a ∈ proposeS
c 7→ a ∈ cfpR c 7→ a /∈ proposeR
c 7→ a /∈ proposeS THEN

THEN proposeR := proposeR
proposeS := proposeS ∪ {c 7→ a} ∪ {c 7→ a}

END END

responded REFINES respond select REFINES select

ANY c WHERE ANY c, as, ar WHERE

c ∈ dom(proposeS) c ∈ dom(proposeR)
c /∈ responded c /∈ dom(acceptS)

THEN c /∈ dom(rejectS)
responded := responded ∪ {c} as ⊆ {c} � proposeR

END ar = {c} � proposeR \ as
receiveAccept c ∈ responded

ANY c, a WHERE THEN

c 7→ a ∈ acceptS acceptS := acceptS ∪ as
c 7→ a /∈ acceptR rejectS := rejectS ∪ ar

THEN END

acceptR := acceptR ∪ {c 7→ a} receiveReject

END ANY c, a WHERE

sendInform c 7→ a ∈ rejectS
ANY c, a WHERE c 7→ a /∈ rejectR

c 7→ a ∈ acceptR THEN

c 7→ a /∈ informS rejectR := rejectR
THEN ∪ {c 7→ a}

informS := informS ∪ {c 7→ a} END

END receiveInform

informed REFINES inform ANY c , a WHERE

ANY c WHERE c 7→ a ∈ informS
c ∈ dom(informR) c 7→ a /∈ informR
c /∈ informed THEN

THEN informR := informR
informed := informed ∪ {c} ∪ {c 7→ a}

END END

Fig. 5: Events of the refinement of the initial chain
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The Timeout pattern requires that any messages received after the deadline
will lead to the responding agent being informed of their failure to meet the
deadline. The agent that has the role of initiating the request will be responsi-
ble for enforcing the deadline. The assumption is made in the model that the
deadline will be specified by the initiator in the messages sent and that a global
clock is available to all of the agents involved. Diagram A shows a successful
one-to-one interaction with the response to a request being received by the ini-
tiator before the deadline. In this case the reply from the initiator will depend
on the initiator’s decision about the response. Diagram B shows the initiator’s
deadline occurring before the response is received and in this case the reply from
the initiator is a rejection of the response. Diagram C shows how a one-to-many
interaction can affect the Timeout pattern. Responses are received from differ-
ent participating agents before and after the deadline has passed. Those received
before the deadline will elicit replies that depend on a decision that is made by
the initiating agent. Those received after will result in a reject notification.

Figure 7 shows the callForProposals, respond and failure events that are
required in the abstract model for the Timeout pattern to be applied. The call-
ForProposals and respond events are already present in the initial chain. The
failure event has been added to model the system responding when no propos-
als are received before the deadline. The pattern for the timeout could be more
general than that taken from the contract net case study. Any request by an
agent that waits for a response could use the Timeout pattern to ensure that
the requesting agent does not wait indefinitely. The abstract pattern in Figure 7
conforms to this general request-response pattern. The invariant conditions for
the refinement are shown in Figure 8. To create the states for before and after



INVARIANTS

failed ⊆ cfp
EVENTS

callForProposals

ANY c WHERE

c ∈ CONVERSATION
c /∈ cfp

THEN

cfp := cfp ∪ {c}
END

failure

ANY c WHERE

c ∈ cfp
c /∈ failed
c /∈ responded

THEN

failed := failed ∪ {c}
END

respond

ANY c WHERE

c ∈ cfp
c /∈ responded

THEN

responded := responded ∪ {c}
END

Fig. 7: Timeout: Abstract events

beforeTimeout ⊆ dom(cfpS)
afterTimeout ⊆ beforeTimeout
proposeRD ⊆ proposeS
rejectSD ⊆ proposeRD
rejectRD ⊆ rejectSD
failedCfp ⊆ afterTimeout
failedCfp ∩ dom(proposeR) = ∅
failed = failedCfp

Fig. 8: Timeout: Refinement invariants

the deadline two variables have been added to the model; beforeTimeout and
afterTimeout. The pattern could have been specified with just the afterTime-
out variable. Both variables were included to make the effect of the deadline
clear in the model. The beforeTimeout variable is specified as a subset of the
domain of the cfpS variable so the timeout cannot occur before the conversation
has begun. Variables have been added to the model to represent the proposals
that are received after the deadline, proposeRD, the reject messages sent in re-
sponse to these proposals, rejectSD, and then received, rejectRD. The failedCfp
variable refines the abstract failed variable to model the state when the dead-
line has passed, failedCfp ⊆ afterTimeout , and no proposals have been received,
failedCfp ∩ dom(proposeR) = ∅.

Events have been added to the initial chain and existing events have been
modified to apply the Timeout pattern. The new and modified events are shown
in Figure 9 where the names of the new events, and the modifications to existing
events, are underlined. The sendCfp event has an additional action that adds
the conversation to the beforeTimeout variable. The guard of the receiveProposal
event has been strengthened so that it can only occur when the conversation is
not in the afterTimeout variable. The new deadline event moves the conversation
from the state beforeTimeout into the state afterTimeout. The new receivePro-
posal2 event can only occur when the conversation is in the afterTimeout vari-
able. The action of the event adds the relationship from the proposeS variable
to the new proposeRD variable. The new sendReject event will take a relation-
ship that is in the proposeRD variable and add it to the rejectSD variable. This



sendCfp REFINES callForProposals receiveProposal

ANY c, as, a WHERE ANY c, a WHERE

c ∈ CONVERSATION c 7→ a ∈ proposeS
c /∈ dom(cfpS) c 7→ a /∈ proposeR
as ∈ CONVERSATION ↔ AGENT c /∈ afterTimeout
a ∈ AGENT THEN

dom(as) = {c} proposeR := proposeR
ran(as) = AGENT \ {a} ∪ {c 7→ a}

THEN END

cfpS := cfpS ∪ as receiveProposal2

beforeTimeout := beforeTimeout ∪ {c} ANY c, a WHERE

END c 7→ a ∈ proposeS
deadline c 7→ a /∈ proposeR

ANY c WHERE c 7→ a /∈ proposeRD
c ∈ beforeTimeout c ∈ afterTimeout
c /∈ afterTimeout THEN

THEN proposeRD := proposeRD
afterTimeout := afterTimeout ∪ {c} ∪ {c 7→ a}

END END

sendReject receiveReject2

ANY c , a WHERE ANY c, a WHERE

c 7→ a ∈ proposeRD c 7→ a ∈ rejectSD
c 7→ a /∈ rejectSD c 7→ a /∈ rejectRD

THEN THEN

rejectSD := rejectSD ∪ {c 7→ a} rejectRD := rejectRD
END ∪ {c 7→ a}

END

failToPropose REFINES failure

ANY c WHERE

c /∈ dom(proposeR)
c ∈ afterTimeout
c /∈ failedCfp

THEN

failedCfp := failedCfp ∪ {c}
END

Fig. 9: Timeout: Concrete events

models the initiator responding with a reject message to any proposals received
after the timeout. The new receiveReject2 event will take a relationship that is
in the rejectSD variable and add it to rejectRD variable. Instead of adding this
as a new event a developer could merge it with the existing receiveReject event
from the initial chain. The new failToPropose event refines the abstract failure
event that was added to the abstract model for the Timeout pattern. It can
occur after the deadline has passed and no proposals have been received.

7 Refuse Pattern

Name: Refuse
Fault: An agent cannot support the action requested.
Tolerance Pattern: Add an event for an agent to send a refuse message in
response to a request and an event for an agent to receive a refuse message.
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Not all agents that receive a request will be able to fulfill it. The request
may be in conflict with the agent’s own goals. This could be due to the agent
being overloaded, or the agent is competing against the requestor and it would
not be in their interest to help. Software design does not always implement the
concept of a refusal. Object-based systems use the term ‘design by contract’ to
describe an obligation held by an object that it cannot alter at runtime [13]. The
autonomy of agents means that the obligations between agents are weaker than
in design by contract and a multi-agent system must be designed to cope when
an agent refuses to undertake a request.

The Refuse pattern allows an agent to respond to a request that it cannot
support, that is not correctly requested or that the requesting agent is not au-
thorised to request. An agent is allowed a choice when responding to a request.
The agent can either agree to fulfill the request or it can refuse.

Figure 10 shows interaction diagrams for the Refuse pattern. Diagram A
shows a one-to-one interaction. The initiator agent sends a request to a partic-
ipant agent. The participant agent can respond with either an accept or refuse
message. The initiator will then make a decision and the interaction may fail if
the accept message is not suitable or a refuse message was sent. Diagrams B and
C show one-to-many interaction. Diagram B shows the case where a combination
of accept and refuse messages are received in response to the request. Diagram
C shows the case where only refuse messages are received and the only outcome
is a failure of the interaction.

The events that are required in the abstract machine for the Refuse pattern
are the same as those shown in Figure 7 for the Timeout pattern. To model
the Refuse pattern in the refinement of the initial chain three variables and
three events have been added. In the contract net case study the refusals are



refuseS ⊆ cfpR
refuseR ⊆ refuseS
refuseS ∩ proposeS = ∅
failedCommit ⊆ dom(refuseR)
failedCommit ∩ dom(proposeR) = ∅
failed = failedCommit

Fig. 11: Refuse: Concrete invariants

sendProposal sendRefusal

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ cfpR c 7→ a ∈ cfpR
c 7→ a /∈ proposeS c 7→ a /∈ proposeS
c 7→ a /∈ refuseS c 7→ a /∈ refuseS

THEN THEN

proposeS := proposeS ∪ {c 7→ a} refuseS := refuseS
END ∪ {c 7→ a}

END

receiveRefusal failToCommit REFINES failure

ANY c, a WHERE ANY c WHERE

c 7→ a ∈ refuseS c ∈ dom(refuseR)
c 7→ a /∈ refuseR c /∈ dom(proposeR)

THEN c /∈ failedCommit
refuseR := refuseR ∪ {c 7→ a} THEN

END failedCommit :=
failedCommit ∪ {c}

END

Fig. 12: Refuse: Concrete events

modelled so they are equivalent to the proposals. The invariants in Figure 11
specify variables that model sending and receiving refuse messages. An additional
invariant specifies that the proposals and refusals for a conversation cannot be
from the same agent, refuseS ∩proposeS = ∅. The failedCommit variable models
that state of the conversation when all of the replies are refusals. This variable
refines the abstract failed variable.

The events for the pattern are shown in Figure 12. The guard of the send-
Proposal event from the initial chain has been modified to prevent an agent
that has made a refusal for the conversation from also making a proposal. The
sendRefusal event adds a relationship that is in the cfpR variable to the refuseS
variable. The receiveRefusal event takes a relationship that is in the refuseS vari-
able and adds it to the refuseR variable. The failToCommit event models the
case when all of the responses are refusals and the conversation fails. This is a
refinement of the abstract fail event.
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8 Cancel Pattern

Name: Cancel
Fault: The requesting agent no longer requires an action to be performed.
Tolerance Pattern: Add an event to the specification for an agent to send a
cancel message to an agent that has agreed to perform an action on its behalf.
Add an event for that agent to receive a cancel message. Further events need
to be added to allow the agent to reply with either an inform, if they have
cancelled the action, or a failure, if they have not, and for those messages to
be received.

Once an agent has requested an action they can then request that it is can-
celled. An agent that exhibits rational behaviour may change its goals because
the goal conflicts with other goals, the agent no longer desires the goal is fulfilled
or the agent no longer believes that the goal can be fulfilled [2]. For the initiating
agent to ensure that its beliefs about its environment are consistent it needs to
know if the agents to whom it has delegated tasks have managed to undo any
actions they have performed. The responses of the agents may affect the actions
the initiating agent takes in response to its change of goals.

The Cancel pattern allows the agent that initiated the conversation to cancel
the conversation at any point. The Cancel pattern will cancel a single request in
a one-to-one conversation and will broadcast the cancellation in a one-to-many
conversation to cancel all of the requests. Figure 13 shows interaction diagrams
for the Cancel pattern. Diagram A shows a one-to-one interaction. The initiator
agent sends a cancel message to a participant agent. The participant agent can
respond with either an inform message if they have successfully cancelled or a fail
message if they have not. The initiator will then act according to its knowledge



INVARIANTS

cancelled ⊆ cfp
EVENTS

cancel

ANY c WHERE

c ∈ cfp
c /∈ cancelled

THEN

cancelled := cancelled ∪ {c}
END

Fig. 14: Cancel: Abstract events

cancelS ⊆ cfpS
cancelR ⊆ cancelS
informCancelS ⊆ cancelR
informCancelR ⊆ informCancelS
failCancelS ⊆ cancelR
failCancelR ⊆ failCancelS
informCancelled ⊆ dom(informCancelR)
failCancelled ⊆ dom(failCancelR)
informCancelS ∩ failCancelS = ∅
informCancelled ∩ failCancelled = ∅
cancelled = informCancelled ∪ failCancelled

Fig. 15: Cancel: Refinement invariants

about the state of the system. Diagrams B and C show one-to-many interaction.
Diagram B shows the case where a combination of inform and fail messages are
received in response to the cancel message. Diagram C shows the case where
only fail messages are received and the cancelling of the action fails.

The Cancel pattern requires a new variable and event to be added to the
abstract machine of the initial chain. The abstract pattern in Figure 14 shows
the cancel event moving the conversation into the cancelled state.

The Cancel Pattern is modelled in the refinement as a collection of events
that can occur at any point in the conversation. Events model a cancel message
being sent from the initiating agent and received by the other agents involved.
Events are also required to model the participating agents responding to the
cancel request to inform the initiating agent whether they have managed to
cancel their actions.

Figure 15 shows the invariant conditions from the Event-B extract of the
Cancel pattern. The variables represent the states of the system as messages
are sent and received. The cancelS variable is a subset of the cfpS variable so a
conversation cannot be cancelled before it has begun. All of the other variables
are specified as subsets according to the order of the messages that they represent
being sent and received. InformCancelS and failCancelS are specified so the same
agent cannot send an inform and fail message in the same conversation. The
informCancelled and failCancelled variables are specified so the conversation
cannot be in both states. An invariant condition specifies the intersection of the
two variables as empty. The final invariant condition is the gluing invariant that
relates the abstract cancel variable to a conjunction of the informCancelled and
failCancelled variables.

Figure 16 shows the events that have been added to the initial refinement
model to specify the Cancel pattern. The sendCancel event can be triggered
by the initiating agent at any point in the conversation. The cancel message is
broadcast to every agent involved in the conversation, as = {c} � cfpS . The
receiveCancel event allows the participants to receive the cancel message. The
sendInformCancel and sendFailCancel events model the participants sending a
message to the initiator about the success or failure of the cancellation. The
receiveInformCancel and receiveFailCancel events model the initiator receiving
the message. The last two events, informCancelled and failCancelled, refine the
abstract cancel event and model the initiator evaluatings the success of the
cancellation. The guards for the two events specify that at least one inform or



sendCancel receiveCancel

ANY c , as WHERE ANY c, a WHERE

c ∈ dom(cfpS) c 7→ a ∈ cancelS
as = {c} � cfpS c 7→ a /∈ cancelR
c /∈ dom(cancelS) THEN

THEN cancelR := cancelR ∪
cancelS := cancelS ∪ as {c 7→ a}

END END

sendInformCancel sendFailCancel

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ cancelR c 7→ a ∈ cancelR
c 7→ a /∈ informCancelS c 7→ a /∈ failCancelS
c 7→ a /∈ failCancelS c 7→ a /∈ informCancelS

THEN THEN

informCancelS := informCancelS failCancelS := failCancelS
∪ {c 7→ a} ∪ {c 7→ a}

END END

receiveInformCancel receiveFailCancel

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ informCancelS c 7→ a ∈ failCancelS
c 7→ a /∈ informCancelR c 7→ a /∈ failCancelR

THEN THEN

informCancelR := informCancelR failCancelR := failCancelR
∪ {c 7→ a} ∪ {c 7→ a}

END END

informCancelled REFINES cancel failCancelled REFINES cancel

ANY c WHERE ANY c WHERE

c ∈ dom(informCancelR) c ∈ dom(failCancelR)
c /∈ informCancelled c /∈ failCancelled
c /∈ failCancelled c /∈ informCancelled

THEN THEN

informCancelled := informCancelled failCancelled := failCancelled
∪ {c} ∪ {c}

END END

Fig. 16: Cancel: Concrete events

fail cancel message has been received. The developer may want to strengthen
these guards. For example, the guard of the informCancelled event could be
strengthened to specify that all of the agents have replied with an inform mes-
sage, {c}� informCancelR = AGENT \ {a}, or that no fail messages have been
received, c /∈ dom(failCancelR).

9 Failure Pattern

Name: Failure
Fault: An agent is prevented from carrying out an agreed action.
Tolerance Pattern: Add an event for an agent to send a failure message after
they have committed to perform an action on behalf of another agent. Add an
event for an agent to receive a failure message and an event for the system to
respond to the failure.
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Fig. 17: Failure: Interaction diagrams

An agent that makes a commitment to perform an action may be prevented
from carrying it out. The agent that requested the action should be informed of
this failure so that its beliefs do not become inconsistent.

Figure 17 shows interaction diagrams for the Failure pattern. Diagram A
shows a one-to-one interaction. The initiator agent sends a message that requests
an action to a participant agent. The participant agent can respond with either
an inform message, if they have successfully carried out the action, or a fail
message, if they have not. Diagrams B and C show one-to-many interaction.
Diagram B shows the case where a combination of inform and fail messages are
received in response to the accept message. The initiator will then be able to
evaluate whether the task was carried out successfully. Diagram C shows the
case where only fail messages are received. The Failure pattern is similar to the
Refuse pattern where the responding agent has a choice of two replies that affect
the outcome of the interaction differently. It occurs at a different point in the
conversation. The Refuse pattern is used before a commitment is made and the
Failure pattern is required after a commitment has been made.

Figure 18 shows the events from the abstract machine that are related to
the Failure pattern. The failure pattern specifies the failure of the conversation
after the selection of the proposals has been made. Either the inform event or
the failure event can complete the conversation.

Figure 19 shows the invariants added for the Failure pattern. The Event-
B models the agents involved in the contract net interaction protocol sending
failure messages instead of inform messages after they have had their proposal
accepted. The conversation cannot succeed and fail and this is modelled by



inform

ANY c WHERE

c ∈ selected
c /∈ informed
c /∈ failed

THEN

informed := informed ∪ {c}
END

failure

ANY c WHERE

c ∈ selected
c /∈ failed
c /∈ failed
c /∈ informed

THEN

failed := failed ∪ {c}
END

Fig. 18: Failure: Abstract Events

failS ⊆ acceptR
failR ⊆ failS
failed1 ⊆ dom(failR)
informed ∩ failed1 = ∅
failed = failed1

Fig. 19: Failure: Refinement invariants

sendFail receiveFail

ANY c, a WHERE ANY c, a WHERE

c 7→ a ∈ acceptR c 7→ a ∈ failS
c 7→ a /∈ failS c 7→ a /∈ failR
c 7→ a /∈ informS THEN

THEN failR := failR ∪ {c 7→ a}
failS := failS ∪ {c 7→ a} END

END

failed REFINES failure

ANY c WHERE

c ∈ dom(failR)
c /∈ failed1
c /∈ informed

THEN

failed1 := failed1 ∪ {c}
END

Fig. 20: Failure: Concrete events

an invariant condition that specifies the intersection of the informed and failed
variables as empty.

Figure 20 shows the three events that are added to the initial concrete model.
The sendFail event models a participant having received an accept message that
instructs it to carry out a task, c 7→ a ∈ acceptR, sending a failure message in
response. The receiveFail event models the initiator receiving the failure message.
The failed event refines the abstract failure event and can occur after a failure
message has been received.



10 Not-Understood Pattern

Name:Not-Understood
Fault: An agent receives a message that it does not expect or does not recog-
nise.
Tolerance Pattern: Specify an event for receiving a message with an un-
known or unexpected performative. Specify the action as replying with a not-
understood message. Specify an event for receiving a not-understood message.

The autonomy of the agents means that there is no guarantee of their be-
haviour and the non-hierarchical nature of multi-agent systems often means that
there is no single point of control. For agents in a multi-agent system to maintain
a correct understanding of their environment they need to communicate with the
other agents in the system to be aware of the actions of the other agents. This
can create a large number of messages being passed between agents for them to
be able to negotiate, query and inform. The possible heterogeneity of the agents
means that they may have a different understanding of interaction protocols.
The possibility of receiving arbitrary messages increases with each of these fac-
tors and the system needs to be able to cope with such faults. In a multi-agent
system that has been developed in a top-down manner the faults that may lead
to an arbitrary message being sent should not occur. However, it may be that
some of the system components have been developed separately or that the for-
mal development of the system is limited to modelling the interactions. In these
cases the inclusion of the Not-Understood pattern will provide assurance that
the system can still tolerate the faults outlined above.

The concept of the not-understood message is described in [8]. The not-
understood message communicates that the sending agent has received a message
that it does not understand. A not-understood message can be sent or received
at any point in the conversation.

It is suggested in [8] that the action taken in response to a not-understood
message should be different when the conversation involves broadcast messages
and sub-protocols than that taken as part of a one-to-one conversation. It may
be inappropriate to cancel the conversation when there are multiple agents per-
forming sub-protocols. Each response to a not-understood message should be
evaluated depending on the status of the conversation and is not specified by
the Not-Understood pattern.

The Not-Understood pattern involves agents receiving an arbitrary mes-
sage, responding with a not-understood message and agents receiving a not-
understood message. The action taken by the agent to cope with the potential
fault is not modelled and is left for the developer to treat.

Figure 21 shows an interaction diagram for the Not-Understood pattern. The
interaction diagram shows an interaction between any two agent roles. One agent
sends another agent a message that the receiving agent does not understand. The
response from the receiving agent will be to reply with a not-understood message.
The action taken by the agent that receives the not-understood message depends
on their role in the conversation and the stage of the conversation.
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Fig. 21: Not-Understood: Interaction diagram

INVARIANTS

recUnknown ⊆ CONVERSATION
recNotUnderstood ⊆ cfp

EVENTS

arbitraryComm receiveNotUnderstood

ANY c WHERE ANY c WHERE

c ∈ cfp c ∈ cfp
THEN THEN

recUnknown := recUnknown ∪ {c} recNotUnderstood :=
END recNotUnderstood ∪ {c}

END

Fig. 22: Not-Understood: Abstract events

To model the Not-Understood pattern two events have been added to the
initial abstract machine for the contract net case study. The events and variables
are shown in Figure 22. The arbitraryComm event models the unrecognised
message being received. The receiveNotUnderstood event abstractly model an
agent receiving a not-understood message.

Figure 23 shows the extract from the Event-B refinement model that mod-
els the Not-Understood pattern in the Contract Net case study. The unknownR
variable represents an arbitrary message being received and the notUnderstoodS
variable represents a not-understood message being sent in response to the re-
ceipt of an arbitrary message. The notUnderstoodR variable represents a not-
understood message being received.

The receiveArbitraryComm event models the receipt of a message that is
not understood by the receiving agent. The sendNotUnderstood event models a
not-understood message being sent in response to the receipt of this message.
The receiveNotUnderstood event models an agent receiving a not-understood
message. Further refinements of the pattern will model the agent’s reactions to
receiving the not-understood message. An initiator agent may decide to can-
cel the conversation or they may decide that the conversation has failed. The
decisions by the agents will depend on the stage of the conversation when the
not-understood message is received. This is left for the developer to decide and
model.



INVARIANTS

unknownR ⊆ cfpS
notUnderstoodS ⊆ unknownR
recUnknown = dom(notUnderstoodS)
notUnderstoodR ⊆ notUnderstoodS
recNotUnderstood = dom(notUnderstoodR)

EVENTS

receiveArbitraryComm

ANY c, a WHERE

c 7→ a ∈ cfpS
THEN

unknownR := unknownR ∪ {c 7→ a}
END

sendNotUnderstood REFINES arbitraryComm

ANY c, a WHERE

c 7→ a ∈ unknownR
c 7→ a /∈ notUnderstoodS

THEN

notUnderstoodS := notUnderstoodS ∪ {c 7→ a}
END

receiveNotUnderstood REFINES receiveNotUnderstood

ANY c, a WHERE

c 7→ a ∈ notUnderstoodS
c 7→ a /∈ notUnderstoodR

THEN

notUnderstoodR := notUnderstoodR ∪ {c 7→ a}
END

Fig. 23: Not-Understood: Concrete invariants and events

11 Related Work

This section describes work that is related to the ideas presented in this paper.
This work outlines approaches for constructing patterns in the B-Method and
Event-B. Other work of interest are design patterns for multi-agent systems,
particularly patterns that can be integrated with goal models that are used
in multi-agent system design. Other fault-tolerance techniques for multi-agent
systems have been investigated and are summarised in this section.

The B-Method is used in [14] to specify patterns, such as those identified
in [7], as abstract machines. The pattern machines are instantiated by including
another B model in the machine using the B-Method’s inclusion mechanism.
Pattern models can be composed to create a new pattern by using the inclusion
mechanism to construct a new machine from the separate patterns. These pat-
terns are specified at a single level of abstraction and are based on object-oriented
development methods.

A set of patterns that solve design problems that are common when using
the B-Method has been produced in [15]. The patterns they present include a
pattern to associate multiple B machines, a pattern to produce unique objects



and patterns for creating sub and super-types of B machines. The patterns are
implemented as either extracts of B machines or a description of how differ-
ent mechanisms from the B-Method can be used to solve a described problem
alongside an example of the patterns use. As with those described above, these
patterns attempt to introduce some object-oriented concepts into B machines,
are at a single level of abstraction and mainly address structural relationships
between machines.

A refinement pattern for modelling time constraints in Event-B is presented
in [16]. A pattern is produced by constructing a generic Event-B model that
specifies the time constraints as a superpostion refinement. This model can be
re-used to produce new refinements of the model to which the pattern is being
applied. The authors suggest that it would be possible to prove the pattern
model and the proof obligations generated by the pattern would not need to be
discharged for the development model.

There are several methods for the use of patterns in the development of
multi-agent systems. They are described and used with informal models. Coor-
dination patterns, including a pattern of the contract net protocol, are presented
in [17], patterns for mobile agent design are presented in [18], and [19] present
patterns for implementing agents in object-oriented architectures. A strategy
for constructing and using design patterns for agent systems that uses goals can
be found in [20]. The patterns can be combined using a pattern language to
construct a multi-agent system design.

The extend relationship used in Figure 1 of this paper is similar to those
found in [21], but has not been formally defined.

The patterns presented in this paper provide fault-tolerance for the agents so
they can continue to provide a service. Further strategies for managing faults in
agent conversations include adapting general fault-tolerance techniques, such as
replication [22], redundancy [23] and checkpoints [24], to multi-agent systems.
Creating patterns for the specification of these fault-tolerance strategies in multi-
agent systems is a possible direction for future work.

12 Summary

Event-B has been developed for modelling reactive and distributed systems and
our experience shows that it is suited to the specification of multi-agent systems.
The patterns presented above allow the developer to incorporate fault-tolerant
behaviour in an Event-B development of a multi-agent system.

The patterns are presented as three elements: a description, interaction dia-
grams and Event-B examples. The Event-B examples make the patterns specific
to Event-B development. The other elements of the pattern are more generic
and could be suitable for other event-based formal methods. The inclusion of
an abstraction of the pattern creates a pattern that can be fully integrated into
the refinement chain of a development. The Event-B extracts included from the
Contract Net case study show how the patterns can be applied to the model of



a complex multi-agent system. They also provide a re-usable specification of the
pattern at a single level of refinement.

Providing an abstract and concrete pattern example will offer the developer
guidance on how the pattern can be integrated into an Event-B development
that uses refinement. The related work described above use patterns either as a
superposition refinement to an Event-B model or as a component to a model.
Integrating a pattern into the refinement chain of a development offers the ad-
vantages of making the pattern a fundamental part of the development. It is
present in the abstraction of the model and can be analysed at all levels of
abstraction.
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