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Abstract. In a replicated database system, copies of the database are
kept across several sites for fault-tolerance and availability. Data access
in such systems is usually done within a transactional framework. A read-
only transaction accesses data locally and an update transaction modifies
the database at all sites. Total order broadcast primitives have been
proposed to support transactions and allow fault-tolerant cooperation
between the sites in a distributed system. In this paper, we identify
and analyze the problem of formation of deadlocks among conflicting
update transactions due to race conditions and outline how a system of
total order broadcast prevents deadlocks and transaction failures. Later
we outline how a refinement based approach with Event-B can be used
for formal development of the models of total order broadcast. In this
approach we begin with the abstract model of a total order broadcast and
verify that the required ordering properties are preserved by the system.
Subsequently, in a series of refinement steps we outline how an abstract
total order can correctly be implemented by using a notion of sequence
number. This technique requires us to discharge proof obligations due to
consistency and refinement checking. To discharge the proof obligations
we are required to discover invariants that describes the relationship
between the abstract total order and the underlying mechanism.

1 Introduction

A replicated database system can be defined as a distributed system where
copies of the database are kept across several sites. Data access in a replicated
database can be done within a transactional framework. A distributed transac-
tion may span several sites reading or updating data objects. It is advantageous
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to replicate the data if the transaction workload is predominantly read only. How-
ever, during updates, the complexity of keeping the replicas in a consistent state
arises due to race conditions among conflicting update transactions. A typical
distributed transaction contains a sequence of database operations which must
be processed at all of the participating sites or none of the sites to maintain
the integrity of the database. The strong consistency criterion in the replicated
database requires that the database remains in a consistent state despite trans-
action failures. In addition to providing fault-tolerance, one of the important
issues to be addressed in the design of replica control protocols is consistency.
The one copy equivalence [9] criteria requires that a replicated database is in
a mutually consistent state only if all copies of data objects logically have the
same identical value.

No common global clock or shared memory exist in a distributed system. The
sites communicate by exchange of messages which are delivered to them after
arbitrary time delays. In such systems up-to-date knowledge of the system is not
known to any process or site. This problem can be dealt by relying on group
communication primitives that provide ordering guarantees on the delivery of
messages. The group communication primitives have been proposed as a mecha-
nism for the development of reliable fault-tolerant distributed applications [16].
A total order broadcast is one such primitive that guarantees the delivery of mes-
sages to the sites in the same order. Introduction of the transactions based on
group communication primitives represents an important step towards extending
the power of group communication in an asynchronous distributed system [34].
These primitives have been proposed for processing transactions and managing
replicated databases [21,35,22]. In a replicated database that uses a reliable
broadcast without ordering guarantees, the operations of the conflicting update
transactions may arrive at different sites in different orders. This may lead to the
formation of deadlock among conflicting transactions involving several sites. The
blocking of the transactions at a site is usually resolved through aborting the
transaction by timeouts. The abortion of conflicting transactions can be avoided
by using a total order broadcast which delivers and executes the conflicting
operations at all sites in the same order.

In this paper we present an incremental development of a model of total or-
der broadcast using Event-B [28], which is a variant of B Method [1]. Event-B is
a formal technique for the development of models of distributed systems. This
technique consists of describing rigorously the problem in an abstract model, in-
troducing solutions or design details in refinement steps to obtain more concrete
specifications, and verifying that the proposed solutions are correct. The B tools
provide a significant automated proof support for generating the proof obliga-
tions and discharging them. This technique requires the discharge of proof obli-
gations for consistency checking and refinement checking. The technique is sup-
ported by several industrial level B tools such as, Rodin [3] and Click’'n’Prove [4]
that provide a significant automated proof support for generation of the proof
obligations, factorizing complex proof obligations into simpler proofs and dis-
charging them. The majority of the proof obligations are proved by the auto-



matic prover of the tools. However, some complex proof obligations require user
guidance through the interactive prover. These proof obligations also help in
the discovery of new system invariants. The proof obligations and the invariants
help to understand the complexity of the problem and the correctness of the
solutions. They also provide a clear insight into the system and enhance our un-
derstanding of why a design decision should work. The essential features of the
modelling and proof guidelines to obtain an high degree of automated proof for
an Event-B development are outlined in [15]. We have used the Click’n’Prove [4]
B tool for proof obligation generation and to discharge them.

The remainder of this paper is organized as follows: Section 2 outlines the sys-
tem model, Section 3 identifies the problem of formation of deadlocks among the
transactions due to unordered delivery of update messages, Section 4 describes
informal specifications of a total order broadcast and mechanism for implemen-
tation, Section 5 outlines the abstract model of total order broadcast, and shows
how an abstract total order is constructed on the messages. Section 6 present
the invariant properties of the system. We also outline how the proof obligations
generated by the B tool help us discover new invariants. Section 7 illustrates es-
sential features of the refinement chain. Section 8 present related work on group
communication and the application of formal methods to the problem. Finally,
Section 9 concludes the paper.

2 Background

We have presented a rigorous design of distributed transactions for a replicated
database using Event-B in [38]. Our system model consist of a sets of sites and
data objects. Users interact with the database by starting transactions. We con-
sider the case of full replication and assume all data objects are updateable. The
Read Anywhere Write Everywhere [9, 30] replica control mechanism is considered
for updating replicas. In our model, update transactions are processed within
the framework of a two phase commit protocol [19] to ensure global atomicity.

2.1 Transaction Model

A transaction is considered as a sequence of read/write operations executed
atomically, i.e., a transaction will either commit or abort the effect of all database
operations. The following types of transactions are considered for this model of
replicated database.

— Read-Only Transactions : These transactions are submitted locally to the
site and commit after reading the requested data object locally.

— Update Transactions : These transactions update the requested data objects.
The effect of update transactions are global, thus when committed, replicas
of data objects maintained at all sites must be updated. In the case of abort,
none of the sites update the data object.



Let the sequence of read /write operations issued by the transaction T; be defined
by a set of objects objectset|T;] where objectset[T;] # &. Let the set writeset|[T;]
represents the set of object to be updated such that writeset[T;] C objectset[T;].
A transaction T; is a read-only transaction if writeset[T;]= @. Similarly a trans-
action T; is an update transaction if its writeset[T;] # @.

2.2 Conflicting Transactions

Two update transactions T; and T are in conflict if the sequence of operations
issued by T; and T; are defined on set of object objectset[T;] and objectset[T)]
respectively and objectset[T;] N objectset|[T;] # @. To meet the strong consistency
requirements, conflicting transactions need to be executed in isolation. We ensure
this property by not starting a transaction at a site if any conflicting update
transaction is active at that site. In our model the transactions are executed as
follows.

— A read-only transaction T; is executed locally at the initiating site of T;(also
called the coordinator site of T;) by acquiring locks on the data object defined
by objectset|T;].

— A global update transaction 7T; is executed by broadcasting an update mes-
sage to the participating sites. On delivery, a participating site S; initiates
a sub-transaction T;; by acquiring locks on objectset[T;]. If the objects are
currently locked by another transaction, T;; is blocked. The activity of a
global update transaction at a given site is referred as sub-transaction.

— The coordinator site of T; waits for the vote commit/abort messages from
all participating site. A global commit/abort message is broadcast by the
coordinator site of T; only if it receives all local commit message from all
participating sites or at-least one vote-abort message from participating sites.

The commit or abort decision of a global transaction T; is taken at the coor-
dinator site within the framework of a two phase commit protocol as shown in
Fig. 1 as follows. A global transaction T; commits if all T;; commit at S;. The
global transaction T; aborts if some T;; aborts at S;.

Coordinator Cohorts
Start Tran

Undate Reauest Messace Begin Sub-Transaction

Vote-Commit/Abort Message L ocal Commit/Abort

Global Commit/Abort

Global Commit/Abort Message ExeCommit/Abort Decision

Fig. 1. Events of Update Transaction



3 Blocking and Failures of Conflicting Transactions

This section outlines how conflicting update transactions in our model can be
deadlocked. A formal refinement based approach using Event-B to model and
analyze distributed transaction is given in [38]. In our abstract model, an up-
date transaction modifies the abstract one copy database through a single atomic
event. In the refinement, an update transaction consists of a collection of inter-
leaved events updating each replica separately. The transaction mechanism on
the replicated database is designed to provide the illusion of atomic update of
a one copy database. Through the refinement proofs, we verify that the design
of the replicated database conforms to the one copy database abstraction de-
spite transaction failures at a site. The global atomicity of update transactions
is ensured by processing update transactions within the framework of two phase
commit protocol. We assume that the sites communicate by a reliable broadcast
which eventually deliver messages without any ordering guarantees.

In the abstraction, the global state of update transactions is represented
by a variable transstatus in the abstract model of the transactions. The vari-
able transtatus is defined as transtatus € trans — TRANSSTATUS, where
TRANSSTATUS={COMMIT,ABORT,PENDINGY}. The transstatus maps each
transaction to its global state. An update transaction commits by updating ab-
stract variable database. With respect to an update transaction, activation of
the following events change the global transaction states.

— StartTran(tt) : The activation of this event starts a fresh transaction and
the state of the transaction is set to pending.

— CommitWriteTran(tt) : This event models global commit of an update trans-
action. A pending update transaction commits atomically by updating the
abstract database and it status is set to commit.

— AbortWriteTran(tt) : This event models global abort of an update trans-
action. A pending update transaction aborts by making no change in the
abstract database and its status is set to abort.

In the refined model, a global update transaction can be submitted to any
one site, called the coordinator site for that transaction. Upon submission of an
update transaction, the coordinating site of the transaction broadcasts all oper-
ations of the transaction to the participating sites by an update message. Upon
receiving the update message at a participating site, the transaction manager
at that site starts a sub-transaction. The activity of a global update transac-
tion at a given site is referred as a sub-transaction. The BeginSubTran(tt,ss)
event models starting a sub-transaction of ¢t at participating site ss. The spec-
ifications of this event is given in the Fig. 2. In this refinement, the state of a
transaction at a site is represented by a variable sitetransstatus. The variable
sitetransstatus maps each transaction, at a site, to transaction states given by a
set SITETRANSTATUS, where SITETRANSTATUS={pending, commit, abort,
precommit}. A transaction ¢ is said to be active at a site s if it has acquired the
locks of the object set at that site.



BeginSubTran ( tte TRANSACTION ,sse STE)=
WHEN A ttetrans
(ss— tt)e activetrans
ss ¢ dom(sitetransstatus)
ran(transeffect(tt))={ &}
objectset(tt) c freeobject[{ss}]
transstatus(tt)=PENDING
Viz(tze trans A (ss— t2)e activetrans
= objectset(tt) N objectset(tz2) = Q)
THEN activetrans := activetrans u {ss— tt}
|| sitetransstatus(tt)(ss) := pending
|| freeobject := freeobject - {ss} x objectset(tt)

> > > > > >

END;

Fig. 2. Sub Transaction

Our model prevents starting sub-transaction at a site if any conflicting trans-
action is already active at that site. Following guard of BeginSubTran(tt) event
ensures that a sub-transaction of ¢t is started at site ss when no active transac-
tion ¢z running at ss is in conflict with tt :

(ss+— tz) € activetrans = objectset(tt) N objectset(tz) = @

The guard ss ¢ dom(sitetransstatus(tt)) prevents starting a sub-transaction
again at the site ss. As a consequence of the occurrence of this event, transaction
tt becomes active at site ss and the sitetransstatus of tt at ss is set to pending.
The guard ran(transef fect(tt)) # {@} states that ¢t is an update transac-
tion, i.e., writeset(tt) # . Instead of giving the specifications of all events of
the refinement in the similar detail, brief descriptions of the new events in this
refinement are outlined below.

— BeginSubTran(tt) : This event models starting a sub-transaction at a site.
The status of the transaction ¢t at site ss is set to pending.

— SiteAbortTxz(ss,tt) : This event models local abort of a transaction at a site.
The transaction is said to complete execution at the site. The status of the
transaction ¢t at site ss is set to abort.

— SiteCommitTx(ss,tt) : This event models precommit of a transaction at a
site. The status of the transaction ¢t at site ss is set to precommit.

~ EzeAbortDecision(ss,tt) : This event models abort of a precommitted trans-
action at a site. This event is activated once the transaction has globally
aborted. The status of the transaction ¢t at site ss is set to abort. The trans-
action is said to complete execution at the site.

— EzeCommitDecision(ss,tt) : This event models commit of a precommitted
transaction at a site. This event is activated once the transaction has globally
committed. The status of the transaction ¢t at site ss is set to precommit. The



replica at the site is updated with the transaction effects and the transaction
is said to complete execution at this site.

In our model, update messages from the coordinator site are broadcast using
a reliable broadcast. A reliable broadcast imposes no restriction on the order in
which messages are delivered to the participating sites. This may lead to the
formation of the deadlocks due to race conditions and the sites may abort one
or more of the conflicting transaction by timeouts. For example, consider two
conflicting update transactions 7; and 7 initiated at site S; and S; respectively.
Both of the transactions may be blocked in the following scenario :

— S; starts transaction T; and acquire locks on objectset|[T;] at site S;. Site
S; broadcast update message of T; to participating sites. Similarly, another
site S; starts a transaction T , acquires locks on objectset[T;] at site S; and
broadcast update message of T} to participating sites.

— The site S; delivers update message of T from S; and S; delivers update
message of T; from S;. The Tj is blocked at S; as S; waits for vote-commit
from S; for T;. Similarly, T; is blocked at S; waiting for vote-commit from
Si for Tj

In order to recover from the above scenario where two conflicting transactions
are blocked, either or both transactions may be aborted by the sites. The abort
of these conflicting update transactions may be avoided if a reliable broadcast
also provides ordering guarantees on the message delivery such that all update
messages are delivered to various participating site including the sender in a total
order. In the remaining sections we formally model and analyze a system of total
order broadcast and verify that the required ordering properties are satisfied.

4 Informal Specifications of a Total Order Broadcast

A reliable broadcast [20] eventually deliver the messages to all participating
sites. A total order [16,20] broadcast is a stronger notion of a reliable broad-
cast that delivers messages to all processes in a same delivery order. A total
order broadcast' can be defined as a reliable broadcast which satisfies following
requirement.

If processes p and q both deliver messages m1 and m2, then q delivers m1
before m2 if and only if p delivers m1 before m2.

The agreement property of a reliable broadcast and total order requirements
imply that all correct processes eventually deliver the same sequence of mes-
sages [20]. As shown in the Fig. 3 all processes has same delivery order of
messages. However, as shown in Fig. 4 the delivery order violates total order
requirement as delivery order at process PI and P2 are different.

! The Total Order Broadcast is also known as Atomic Broadcast. Both of the terms
are used interchangeably. However we prefer the former as the term atomic suggests
the agreement [20] property rather than total order.
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Mechanism for Total Order Implementations : The key issues with re-
spect to the total order broadcast algorithms are how to build a total order and
what information is necessary for defining a total order. In our development we
consider Broadcast Broadcast(BB) [16] variant of a sequencer based system. In
sequencer based system, a specific process takes the role of a sequencer and be-
comes responsible for building a total order. The protocol consists of first broad-
casting m to all destinations including the sequencer, followed by an another
broadcast of its sequence number by the sequencer. All destination processes
deliver messages according to their sequence numbers assigned by the sequencer
process. As shown in the Fig. 5 process P2 broadcast a computation message m.

p1  Sequencer N
' .. control message (')
» v [sedno(m)]
computation message (M) a )
P2 e o
P3 e

Fig. 5. Broadcast Broadcast variant



Upon delivery of m to a sequencer process, sequencer assigns a sequence num-
ber and broadcast its sequence number by a control message(m’). Upon receipt
of the control messages, a destination process deliver its computation message
according to the sequence numbers.

5 Abstract Model of Total Order Broadcast

The abstract model of total order broadcast system is given in Fig. 6 and Fig. 7.
The PROCESS and MESSAGE sets define types for the model. The specification
contains of four variables sender, totalorder, tdeliver and delorder.

MACHINE TotalOrder

SETS PROCESS, MESSAGE
VARIABLES sender, totalorder, delorder, tdeliver
INVARIANT sender e MESSAGE — PROCESS A

totalorder e MESSAGE <> MESSAGE 4

delorder e PROCESS — (MESSAGE <> MESSAGE) ~

tdeliver e PROCESS <> MESSAGE
INITIALISATION  sender:=& || totalorder :=& ||

delorder := PROCESSx {J} || tdeliver := &

Fig. 6. Initial Part : Level-0

The sender is defined as a partial function from MESSAGE to PROCESS.
The mapping (m — p) € sender indicates that message m was sent by a process
p. The variable totalorder is defined as a relation among the messages. A mapping
of the form (m1r—m2) € totalorder indicate that message m1 is totally ordered
before m2. The variable tdeliver represent the messages delivered following a
total order. A mapping of form (p — m) € tdeliver represents that a process p
has delivered m following a total order. In order to represent the delivery order
of messages at a process, variable delorder is used. A mapping (ml — m2) €
delorder(p) indicate that process p has delivered m1 before m2.

The event Broadcast given in the Fig. 7 models the broadcast of a message.
Similarly, the event Order models the construction of total order on a message
when it is delivered to a process in the system for the first time, i.e., an abstract
global total order is constructed on a message at the first ever delivery of it to
any process in the system. Later in the refinement we show that it is a role of
a sequencer process. The TODeliver models the delivery of the messages to a
process when a total order on the message has been constructed.



Broadcast (pp e PROCESS, mme MESSAGE ) =
WHEN mm ¢ dom(sender)

THEN sender := sender U {mm ~ pp}
END;

Order (pp € PROCESS,mme MESSAGE ) =
WHEN mm e dom(sender) A

mm ¢ ran(tdeliver) A
ran(tdeliver) < tdeliver[{ pp}]
THEN tdeliver := tdeliver u {pp —» mm} ||
totalorder :=totalorder u ( ran(tdeliver) x {mm}) ||
delorder(pp) := delorder(pp) u (tdeliver[{pp}] x {mm})

END;
TODéliver (pp e PROCESS, mme MESSAGE) =
WHEN mm e dom(sender) A

mm e ran (tdeliver ) A
pp— mm ¢ tdeliver A
vm.( me MESSAGE A (m— mm) e totalorder
= (pp — m) e tdeliver)
THEN tdeliver := tdeliver u {pp—» mm} ||
delorder(pp) := delorder(pp) u (tdeliver[{pp}] x {mm})
END

Fig. 7. Events : Level-0

5.1 Constructing a Total Order

The event Order models the construction of an abstract total order on mes-
sage mm its first ever delivery to a process pp. The following guards of this
event ensures that the message mm has not been delivered elsewhere and that
each message delivered at any other process has also been delivered to this pro-
cess(pp).

mm ¢ ran(tdeliver)

ran(tdeliver) C tdeliver[{pp}]

Later in the refinement we show that this is a function of a designated pro-
cess called sequencer. As a consequence of the occurrence of Order event, the
message mm is delivered to the process pp and variable totalorder is updated by
mappings in (ran(tdeliver) x mm). This indicates that all messages delivered at
any process in the system are ordered before mm. Similarly, the delivery order
at the process is also updated such that all messages delivered at any process
precedes mm. It can be noticed that the total order for a message is built when
it is delivered to a process for the first time.

10



The event TODeliver(pp,mm) models the delivery of a message mm to a
process pp respecting the total order. As the guard mm € ran(tdeliver) implies
that the mm has been delivered to at least one process and it also implies that the
total order on the message mm has also been constructed. Later in the refinement
we show that process pp represents a process other than the sequencer process.
The guard of the event ensure that message mm has already been delivered
elsewhere and that all messages which precedes mm in abstract total order has
also been delivered to pp.

5.2 Invariant Properties of Total Order

After building an abstract model of a total order broadcast(Level-0), our goal
was to formally verify that our model preserves the total ordering properties
defined in the Section 4. The agreement and total order requirement imply that
all correct process eventually deliver all messages in the same order [20]. Thus,
we add following invariant as a primary invariant to our model.

ml — m2 € delorder(p) = ml — m2 € totalorder (1)

This invariant at (1) state that if a process delivers any two messages then their
delivery order at that process corresponds to their abstract total order. Subse-
quently, in order to prove that total order preserves the transitivity property, we
add following as a primary invariant to our model.

ml+— m2 € totalorder A m2 +— m3 € totalorder
= ml — m2 € totalorder (2)

Lastly, to verify that the abstract total order is non-symmetric and non-reflexive,
we add following invariant :

ml — m2 € totalorder = m2 — m1l ¢ totalorder (3)
m € MESSAGE = m — m ¢ totalorder (4)

6 Proof Obligations and Invariant Discovery

In this section, we outline how the proof obligations generated due to the addi-
tion of the primary invariants given at (1), (2), (3) and (4) in Fig. 8 guide us
discovering new invariants.

Verification of Total Ordering Property : In order to verify that our ab-
stract model of total order broadcast satisfies the total order property, we add
Inv-1 given in Fig. 8 to our model. When we add this invariant to our model two
proof obligations were generated associated with the event Order and TODeliver.
Proof obligation associated with the event Order was discharged using interac-
tive prover, however the proof obligation associated with T'ODeliver could not

11



Primary Invariants

[*Inv-1*/ (ml— m2) € delorder(p) = (ml— m2) e totalorder Total Order

[*Inv-2*/ (ml— m2) e totalorder A (M2 —m3) e totalorder Transitivity
= (ml— m3) e totalorder

[*Inv-3*/ (ml— m2) e totalorder = (M2 —ml) ¢ totalorder Non-symmetric
*Inv-4*/ m e MESSAGE = (m— m) ¢ totalorder Non-reflexive

Fig. 8. Primary Invariants-I : Level-0

be discharged. Following is the simplified form of a proof obligation generated
by the interactive prover.

TODeliver(PO1)
p — ml € tdeliver N
p — m2 ¢ tdeliver A
m2 € ran(tdeliver) A
= ml— m2 € totalorder

This state that if process p has delivered m1 but m2 has been delivered
elsewhere then m1 precedes m2 in total order. In order to discharge this proof
obligation, we add an invariant to our model given as Inv-5 in Fig. 9. Addition of
Inv-5 was sufficient to discharge PO1, however a new proof obligation associated
with T'ODeliver was generated due to the addition of Inv-5. Following is the
simplified form of the proof obligation.

TODeliver(PO2)
ml € ran(tdeliver) A
m2 € ran(tdeliver) A
m2 — ml ¢ totalorder N
= ml— m2 € totalorder

This proof obligation require us to prove that if two messages m1 and m2 are
delivered to any process(es) in the system then a total order exists among them,
i.e., either mI precedes m2 or m2 precedes ml in abstract total order. In order
to discharge the proof obligation we add another invariant Inv-6 to our model.
Addition of this invariant to the model further generate proof obligations.

After four round of invariant strengthening we arrive at a set of invariant
given in Fig. 9 which were sufficient to discharge all proof obligations generated

12



Invariants Required By

[*Inv-5*/ (p— ml) e tdeliver A (p—m2) ¢ tdeliver TOdeliver
A M2 e ran(tdeliver)
= (ml— m2) e totalorder

[*Inv-6*/ ml e ran(tdeliver) A m2 e ran(tdeliver) Order, TOdeliver
A (M2 — ml) ¢ totalorder
= (ml— m2) e totalorder

[*Inv-7*/ (p— ml) e tdeliver A (p—m2) e tdeliver Order, TOdeliver
A (M2 — ml) ¢ totalorder
= (ml— m2) e totalorder

[*Inv-8 */ (pl— ml) e tdeliver A (pl—m2) ¢ tdeliver Order, TOdeliver
A (P2 — ml) e tdeliver A (p2 »m2) e tdeliver
= (ml~— m2) e totalorder

Fig. 9. Invariants-II : Level-0

due to addition of invariant Inv-1 is a primary invariant. A brief description of
the properties is given below.

— If a process p has delivered m! and but not m2, and if m2 was delivered to
at least one process elsewhere in the system then mI precedes m2 in total
order(Inv-5).

— If two messages mI and m2 has been delivered anywhere in the system then
a total order exist among them, such that, either mI precedes m2 or m2
precedes m1 in total order. (Inv-6)

— If a process p has delivered two message mI and m2 then either m1 precedes
m2 or m2 precedes m1 in totalorder(Inv-7).

— Given two processes pl and p2, then for any two messages m1 and m2 if
the process p2 has delivered both messages and p! has delivered m1 but
not m2 then mi1 precedes m2 in total order(Inv-8).

Verification of Transitivity Property : Our next step was to verify that our
model of total order broadcast also preserves transitive properties on abstract
total order. In order to verify that total order is transitive, we add Inv-2 given in
Fig. 8 to our model. Addition of this invariant generate several proof obligations.
Using the same strategy of invariants strengthening outlined in previous section,
we arrive at a set of invariant that is sufficient to discharge all proof obligations
generated due the addition of Inv-2 as a primary invariants. A full set of invariant

13



Invariants Required By

*Inv-9*/  (ml—-m2) e totalorder A (p—m2) e tdeliver Broadcast,Order
= (p~—ml) e tdeliver TOdeliver
*Inv-10*/  me ( dom (totalorder) v ran(totalorder) ) Order

= m e ran(tdeliver)

[*Inv-11*/  me dom(sender) = me dom(totalorder) Broadcast, Order
me dom(sender) = me ran(totalorder) TOdeliver
ran(tdeliver) ¢ dom(sender)

Fig. 10. Invariants-III : Level-0

are given in the Fig. 10. A brief description of these properties are outlined below.

— For any two messages m1 and m2 where m1 is totally ordered before m2
then a process p who delivered m2 has also delivered mI (Inv-9).

— The total order is built for those messages which has been delivered to at
least one process(Inv-10).

— A total order can not be build for the messages which were not sent and
each message delivered at any process must be a sent message (Inv-11).

Verification of Non-Symmetric and Non-Reflexive Property : In order
to prove the non-symmetric and non-reflexive property on total order we add
primary invariants Inv-3 and Inv-4 given in Fig. 8 to our model. Using process
outlined in the previous section, we are able to discharge the proof obligations
generated due to addition of these primary invariants without having to add a
new invariant.

7 Overview of the Refinement Chain

In the previous sections we outlined abstract model of a total order broadcast
and the invariant properties of abstract total order. In this section we present a
overview of our refinement chain consisting of six levels. A brief outline of each
refinement step is given below.

L0 This consist of abstract model of total order broadcast. In this model, ab-
stract total order is constructed when a message is delivered to a process
for the first time. At all other processes a message is delivered in the total
order. We have already outlined this level in Section 5.

14



L1 This is a refinement of abstract model which introduces the notion of the
sequencer. In this refinement we outline how a total order on the messages
are constructed by the sequencer.

L2 This is a very simple refinement giving more concrete specification of Order
event. Through this refinement we illustrate that a total order can be built
using the messages delivered to the sequencer rather than all sites.

L3 In this refinement we introduce the notion of computation messages and
sequence numbers. Global sequence number of the computation messages
are generated by the sequencer. The delivery of the messages is done based
on the sequence numbers.

L4 In this refinement we introduce notion of control messages. We also introduce
the relationship of each computation message with the control messages.

L5 A new event Receive Control is introduced. We illustrate that a process other
than sequencer can deliver a computation message only if it has received
control message for it.

7.1 Introducing the notion of the Sequencer : Level-1

In the first refinement, given in Fig. 11, we introduce the notion of a sequencer.
The sequencer is defined as a constant for this model as sequencer € PROCESS.
As shown in the refined specification of Order event given in Fig. 11, a message
is first delivered to the sequencer process. It can be noticed that the the following
guards in the abstract specification

mm ¢ ran(tdeliver)
ran(tdeliver) C tdeliver[{pp}]

are replaced by following.

pp = sequencer
(sequencer — mm) ¢ tdeliver

Due to the guard pp # sequencer shown in the specifications of TODeliver, a
message mm is delivered to a process other than the sequencer. The replacement
of the guards in the Order event generate new proof obligations. Using the same
approach of invariant discovery as outlined in Section 5.2, we arrived at a set of
invariants that was sufficient to discharge all proof obligations. These invariants
are given in Fig. 12. A brief description of these invariants are given in the
following steps.

— A message not delivered to the sequencer have not been delivered elsewhere.
(Inv-12)

— If a total order on any message m has been constructed then it must have
been delivered to the sequencer.(Inv-13,14)
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Order (pp e PROCESS,mme MESSAGE ) =

WHEN pp = sequencer A
mm e dom(sender) A

(sequencer — mm) ¢ tdeliver
THEN tdeliver :=tdeliver U {pp— mm} ||
totalorder := totalorder u ( ran(tdeliver) x {mm})

END;
TODeéliver (pp e PROCESS, mm e MESSAGE) =

WHEN pp # sequencer A
mm e dom(sender) A

mm e ran ( tdeliver ) A
pp— mm ¢ tdeliver A
vm.(me MESSAGE A (m— mm) e totalorder
= (pp— m) e tdeliver)
THEN  tdeliver :=tdeliver u {pp — mm}
END

Fig. 11. Total Order Broadcast : Level-1

Invariants Required By
[*Inv-12*/  (sequencer — m) ¢ tdeliver = m e ran(tdeliver) Order, TOdeliver
[*Inv-13*/  me dom(totalorder) = (sequencer — m) e tdeliver Order
[*Inv-14*/ me ran(totalorder) = (sequencer — m) e tdeliver Order

Fig. 12. Invariants-IV : Level-1

Order (pp e PROCESS,mme MESSAGE ) =

WHEN pp = sequencer A
mm e dom(sender) A

(sequencer — mm) ¢ tdeliver
THEN  tdeliver :=tdeliver u {pp—~ mm} ||

totalorder :=totalorder u ( tdeliver[{sequencer}] x {mm})
END,;

Fig. 13. Total Order Broadcast : Refined Order Event : Level-2
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7.2 Second Refinement : Refinement of Order event

Through this refinement we illustrate that a total order can be built using the
messages delivered to the sequencer. As shown in the Fig. 11, a total order is
generated as totalorder := totalorder U (ran(tdeliver) x {mm}) . It state that
all messages delivered at any process are ordered before the new message mm.

In the refined Order event the totalorder is constructed as totalorder :=
totalorderU(tdeliver[{sequencer}] x {mm}). It state that all messages delivered
to the sequencer are ordered before the new message mm.

Invariants Required By

[*Inv-15*/  ran(tdeliver) = tdeliver[{sequencer}] Order

Fig. 14. Invariants-V : Level-2

The specifications of this refinement are given in the Fig. 13. The replacement
of the operations in the event Order generates proof obligations which require
us to prove that the message delivered elsewhere in the system has also been
delivered to the sequencer. In order to discharge the proof obligations we add the
invariant Inv-15 given in the Fig. 14. This invariant was sufficient to discharge
the proof obligations.

7.3 Third Refinement : Introducing Sequence Numbers

In the third refinement, given in Fig. 15, we introduce the notion of computation
message and the sequence numbers. The new variables computation, seqno and
counter are introduced in the refinement typed as follows :

computation C MESSAGE
seqno € computation + Natural
counter € Natural

The variable segno is used to assign sequence number to the computation mes-
sages. The counter, initialized with zero, is maintained by the sequencer process
and incremented by one each time a control message is sent out by the sequencer
process. It can be noted in the specification of TODeliver event that these mes-
sage are delivered to the processes other than the sequencer in their sequence
numbers. Consider the following guard of the abstract TODeliver event.

(m — mm) € totalorder = (pp — m) € tdeliver
The above is replaced by following guard in this refinement.

segno(m) < seqno(mm) = (pp — m) € tdeliver
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Order (pp € PROCESS,mm e MESSAGE ) =
WHEN pp = sequencer
mm e dom(sender) A

mm e computation A
(sequencer — mm) ¢ tdeliver
THEN totalorder := totalorder U ( tdeliver[{ sequencer}] x {mm}) ||
tdeliver :=tdeliver u {pp+— mm} ||
Segno :=segno U {mm~ counter} ||
counter:= counter + 1

END;
TOD¢éliver (pp € PROCESS, mme MESSAGE) =

WHEN  pp # sequencera
mm e dom(sender) A

mm e ran (tdeliver ) A
pp— mm ¢ tdeliver A
vm.( me computation A ( segno(m) < segno(mm) )
= (pp — m) e tdeliver)
THEN  tdeliver := tdeliver u { pp — mmj}

END
Fig. 15. Total Order Broadcast : Level-3
Invariants Required By
[*Inv-16*/ ml— m2 e totalorder Order, TOdeliver
= segno(ml) < segno(m?2)
[*Inv-17%/ m e computation A m e dom(seqno)  Order, TOdeliver

= sequencer — m e tdeliver

Fig. 16. Invariants-VI : Level-3

The change of the guards in the T'ODeliver event generate new proof obli-
gations. These proof obligations are discharged by adding new invariants given
in the Fig. 16 to the model. Invariant Inv-16 state that if mI precedes m2 in
abstract total order then the sequence number assigned to m1 is less than the
sequence number assigned to m2. The invariant Inv-17 state that if a compu-
tation message has been assigned a sequence number then sequencer must have
delivered it.
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7.4 Fourth Refinement : Introducing Control Messages

In this refinement given in Fig. 17, we introduce the notion of control messages.
A control message is broadcast by the sequencer process for each computation
message. In this refinement, a process broadcasts a computation message mm
to all processes including the sequencer. Upon delivery of this message, the se-
quencer assigns it a sequence number and broadcast its control message. All
process except the sequencer deliver the corresponding computation messages
in the order of the sequence numbers. This refinement consists of following new
state variables typed as follows :

control C MESSAGE
messcontrol € control —» computation

The variables control and computation are used to represent a computation or

Order (pp € PROCESS,mm e MESSAGE,mc e MESSAGE ) =

WHEN pp = sequencer A
mm e dom(sender) A

mm e computation A
(sequencer — mm) ¢ tdeliver A
mc ¢ dom(messcontrol) A
mm ¢ ran(messcontrol)
THEN totalorder := totalorder U ( tdeliver[{ sequencer}] x {mm}) ||
tdeliver :=tdeliver u {pp+— mm} ||
control :=control u {mc} ||
messcontrol := messcontrol u {mc — mm} ||
segno ;= segno U { mm~ counter} ||
counter:= counter + 1

END;
TOD¢dliver (pp € PROCESS, mme MESSAGE) =

WHEN  pp# sequencer A
mm e dom(sender) A

mm e ran ( messcontrol ) A
pp— mm ¢ tdeliver A
vm.( me computation A ( seqgno(m) < segno(mm) )
= (pp — m)  tdeliver)
THEN  tdeliver :=tdeliver u {pp — mm}
END

Fig. 17. Total Order Broadcast : Level-4
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Invariants Required By

[*1nv-18*/ ran(messcontrol) < ran(tdeliver) Order, TOdeliver

[*Inv-19*/ ran(messcontrol) < computation Order, TOdeliver

Fig. 18. Invariants-VII : Level-4

ReceiveControl (pp e PROCESS, mc e MESSAGE ) =
WHEN mc e control A
(pp — Mmc) ¢ receive
THEN  receive:= receive U { pp — mc}

END
TODéliver (pp e PROCESS, mme MESSAGE) =

WHEN pp# sequencer A
mm e computation A

(pp— mm) ¢ tdeliver A
(pp — messcontrol™ (mm)) e receive A
vm.( me computation A (segno(m) < segno(mm)
= (pp — m)  tdeliver)
THEN tdeliver :=tdeliver u {pp — mm}
END

Fig. 19. Total Order Broadcast: Receive Control : Level-5

Invariants Required By

[*Inv-20*/  me computation A messcontrol *(m) e receive Order, TOdeliver
= m e ran(messcontrol)

Fig. 20. Invariants-VIII : Level-5

a control message. The variable messcontrol is a partial injective function which
defines relationship among a control message and its computation message. A
mapping (ml — m2) € messcontrol indicate that message m1 is the control
message related to the computation message m2. The set ran(messcontrol) con-
tains the computation messages for which control messages has been sent by
the sequencer. The guard mm € ran(tdeliver) of TODeliver event is replaced
by the guard mm € ran(messcontrol) in this refinement. This indicate that a
computation message is delivered to a process other than a sequencer only if its
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control message has been sent out by the sequencer. The change in the guards
of Order and TODeliver events generate proof obligations which are discharged
by adding following invariant to the model.

7.5 Fifth Refinement : Introducing Receive Control Event

A new event ReceiveControl is introduced in this refinement. This event model
receiving a control message at a process. A new variable receive is also introduced
in this refinement typed as receive € PROCESS « control. A mapping p +—
m € receive indicate that process p has received a control message m. The
specifications of the refined events are given in Fig. 19.

As shown in the TODeliver event at Level-5, the guard mm € ran(messcontrol)
is replaced by the the guard (pp — messcontrol=t(mm)) € receive. This guard
of the TODeliver event ensures that a process pp delivers a computation mes-
sage mm only when its corresponding control message has been received by the
process pp. The change in the guards generate proof obligations associated with
the event T'ODeliver. In order to discharge these proof obligations we add the
invarinats given in Fig. 20.

8 Related Work

Distributed algorithms can be deceptive, may have complex execution paths
and may allow unanticipated behavior. Rigorous reasoning about such algo-
rithms is required to ensure that an algorithm achieves what it is supposed
to do [25]. The group communication primitives has been proposed to develop
fault-tolerant distributed services. The total order broadcast is one primitive
that deliver messages to the sites in a distributed system in same order. The in-
troduction of transactions based on group communication primitives represents
an important step towards extending the power and generality of group com-
munication for design and implementation of reliable fault-tolerant distributed
computing applications [34]. The implementations of these group communica-
tion primitives has also been investigated for different distributed systems such
Isis [10], Totem [29], Trans [27], Amoeba [36] and Transis [7]. The protocols
in these systems use varying broadcast primitives and address group mainte-
nance, fault tolerance and consistency services. The transaction mechanism in
the management of replicated data is also considered in [6, 8,31, 32, 34].

Group communication services have been studied as a basic building block
for many fault tolerant distributed services, however the application of formal
methods providing clear specifications and proofs of correctness is rare [16].
In [17], I/O automata are used for formal modelling and verification of a se-
quentially consistent shared object system in a distributed network. In order
to keep the replicated data in a consistent state, a combination of total order
multicast and point to point communication is used. In [18, 33] the specification
for group communication primitives are presented using I/O automata under
different conditions such as partitioning among the group and dynamic view

21



oriented group communication. The proof method supported in this method for
reasoning about the system involves invariant assertions. An invariant assertion
is defined as a property of the state of a system that is true in all execution. A
series of invariants relating state variables and reachable states are proved by
hand using the method of induction. In [37], a formal method is proposed to
prove the total and causal order of multicast protocols. The formal results are
provided in the paper that can be used to prove whether an existing system has
the required property or not. Their solutions are based on the assumption that
a total order is built using the service provided by a causal order protocol. In a
similar work in [26], meta properties are used to express total order broadcast
algorithm. The proof of correctness of the results are done by hand.

Instead, our approach of specifying the system and verification is based on
the technique of abstraction and refinement. This formal approach carries a
step-wise development from initial abstract specifications to a detailed design of
a system in the refinement steps. Through the refinement proofs we verify that
design of detailed system conforms to the abstract specifications. A refinement
based approach to developing distributed systems in B is outlined in [12]. Use of
refinement and decomposition rules in the development of telecommunications
systems is outlined in [11]. The refinement approach of Event-B has also been
used for the formal development of fault-tolerant communication systems [24]
and fault-tolerant agent systems [23]. Other important work carried out using
the refinement approach include verification of the IEEE 1394 tree protocol
distributed algorithm [5], development of a secure communication system [13],
development of a train system [2], verification of one copy equivalence criterion
in a distributed database system [38]. The case study on development of Mondex
purse system in Event-B [15] illustrates modelling strategies and the guidelines
to achieve a high degree of automatic proofs.

9 Conclusions

In a replicated database, an update transaction modifies the requested data ob-
jects at various sites. A global update transaction may be submitted to any site
and the effects of the update transaction are global, i.e., at commit all replicas
at various sites must be updated. In case of abort, none of the sites update data
objects. We have presented a rigorous design of distributed transactions for a
replicated database in [38]. In this model, update messages from the coordinator
site are assumed to broadcast using a reliable broadcast. A reliable broadcast
imposes no restriction on the order in which messages are delivered to the par-
ticipating sites. Unordered delivery of updates to the participating sites leads
to the formation of deadlocks and the sites may abort conflicting transactions
by timeouts. The failure of such transactions may be avoided if the updates are
broadcast using a total order broadcast that delivers updates to the participating
sites in a same order.

In this paper we have presented formal development of a system of total order
broadcast. In the abstract model we outline how an abstract total order is con-
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structed on the messages. Subsequently in a series of refinement steps we outline
how an abstract total order can correctly be implemented by using the notion
of control messages and sequence numbers. Instead of model checking, proving
theorems by hand or proving correctness of the trace behavior, our approach
consists of defining problem in the abstract model and introducing solutions or
design details in the refinement steps. Through refinement checking we verify
that the models in the refinement are valid refinement of abstract models. We
used the Click’n’Prove B tool for proof management. This tool generates the
proof obligations due to refinement and consistency checking, factorizes com-
plex proof obligations in to relatively simpler proofs and helps discharge proof
obligations by the use of automatic and interactive prover.

This case study illustrate how an incremental approach to system develop-
ment can be used to obtain more concrete specifications. A powerful tool support
helped us to discover several new invariants that helps to understand why a total
order broadcast can correctly be implemented using sequence numbers. A clear
relationship of computation and control message is outlined to indicate that our
system generate exactly one control message for each computation message. In
this case study approximately 75% of the proof obligations were discharged us-
ing automatic prover. The proof obligations generated by the B tool also help
discovering new system invariants. The proofs and the invariants help to pre-
cisely understand why a design decision or a solution proposed in the refinement
is correct. The over all proof statistics is given in Table 1.

Machine Total POs|Completely Automatic|Required Interaction
Abstract Model|48 29 19
Refinementl |19 16 03
Refinement2 |2 2 00
Refinement3 |18 14 04
Refinement4 |15 14 01
Refinement5 |04 04 00
Overall 106 79 27

Table 1. Proof Statistics- Total Order Broadcast
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