Skip to main content

Combining Timed Coordination Primitives and Probabilistic Tuple Spaces

  • Conference paper
Trustworthy Global Computing (TGC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5474))

Included in the following conference series:

Abstract

In this paper we present an integration of PLinda, a probabilistic extension of Linda, and StoKlaim, a stochastic extension of KLAIM. In the resulting language, StoPKlaim, the execution time of coordination primitives is modeled by means of exponentially distributed random variables, as in StoKlaim, the choice of the primitive to be executed among conflicting ones is thus resolved by the race condition principle, and the choice of the tuple to be retrieved by a single input/read operation in case of multiple matching tuples is governed by the weight-based probabilistic access policy of PLinda. The language represents a natural development and integration of previous results of the SENSORIA Project in the area of probabilistic and time-stochastic extensions of Tuple Space based coordination languages. The formal operational semantics of StoPKlaim is presented and an example of modeling is provided.

Research partially funded by EU Integrated Project SENSORIA, contract n. 016004 and by Italian CNR/RSTL project XXL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bernardo, M., Bravetti, M.: Performance Measure Sensitive Congruences for Markovian Process Algebras. Theoretical Computer Science 290(1), 117–160 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bettini, L., Bono, V., De Nicola, R., Ferrari, G., Gorla, D., Loreti, M., Moggi, E., Pugliese, R., Tuosto, E., Venneri, B.: The klaim project: Theory and practice. In: Priami, C. (ed.) GC 2003. LNCS, vol. 2874, pp. 88–150. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Quantitative Information in the Tuple Space Coordination Model. Theoret. Comput. Sci. 346(1), 28–57 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bravetti, M., Zavattaro, G.: Service Oriented Computing from a Process Algebraic Perspective. Journal of Logic and Algebraic Programming 70(1), 3–14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Nicola, R., Ferrari, G., Pugliese, R.: KLAIM: A Kernel Language for Agents Interaction and Mobility. IEEE Transactions on Software Engineering 24(5), 315–329 (1998)

    Article  Google Scholar 

  6. De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: \(\textsc{Klaim}\) and its stochastic semantics. Technical report, Dipartimento di Sistemi e Informatica, Università di Firenze (2006), http://rap.dsi.unifi.it/~loreti/papers/TR062006.pdf

  7. De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: \(\textsc{MoSL}\): A Stochastic Logic for \(\textsc{StoKlaim}\). Tr, ISTI (2006), http://www1.isti.cnr.it/~Latella/MoSL.pdf

  8. De Nicola, R., Katoen, J.-P., Latella, D., Loreti, M., Massink, M.: Model checking mobile stochastic logic. Theoretical Computer Science 382(1), 42–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Nicola, R., Katoen, J.-P., Latella, D., Massink, M.: Towards a logic for performance and mobility. In: Cerone, A., Wiklicky, H. (eds.) Proceedings of the Third Workshop on Quantitative Aspects of Programming Languages (QAPL 2005). Electronic Notes in Theoretical Computer Science, vol. 153, pp. 161–175. Elsevier, Amsterdam (2006)

    Google Scholar 

  10. De Nicola, R., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a markovian extension of a calculus for services. In: Proc. of SOS 2008 (to appear, 2008)

    Google Scholar 

  11. De Nicola, R., Latella, D., Massink, M.: Formal modeling and quantitative analysis of KLAIM-based mobile systems. In: Haddad, H., Liebrock, L., Omicini, A., Wainwright, R., Palakal, M., Wilds, M., Clausen, H. (eds.) APPLIED COMPUTING 2005. Proceedings of the 20th Annual ACM Symposium on Applied Computing, pp. 428–435. Association for Computing Machinery (2005) ISBN 1-58113-964-0

    Google Scholar 

  12. Gelernter, D.: Generative Communication in Linda. Communications of the ACM 7(1), 80–112 (1985)

    MATH  Google Scholar 

  13. Giacalone, A., Jou, C., Smolka, S.: Algebraic reasoning for probabilistic concurrent systems. In: Broy, M., Jones, C. (eds.) Working Conference on Programming Concepts and Methods, IFIP TC 2. North Holland, Amsterdam (1990)

    Google Scholar 

  14. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation. Theoret. Comput. Sci. 274(1-2), 43–87 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.: Towards model checking stochastic process algebra. In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 420–439. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Hillston, J.: A compositional approach to performance modelling. Distinguished Dissertation in Computer Science. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  17. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and Computation 88(1) (1990)

    Google Scholar 

  18. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Priami, C.: Stochastic π-Calculus. The Computer Journal 38(7), 578–589 (1995)

    Article  Google Scholar 

  21. Stark, E., Smolka, S.: A complete axiom system for finite-state probabilistic processes. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bravetti, M., Latella, D., Loreti, M., Massink, M., Zavattaro, G. (2009). Combining Timed Coordination Primitives and Probabilistic Tuple Spaces. In: Kaklamanis, C., Nielson, F. (eds) Trustworthy Global Computing. TGC 2008. Lecture Notes in Computer Science, vol 5474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00945-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00945-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00944-0

  • Online ISBN: 978-3-642-00945-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics