Skip to main content

Graded-Inclusion-Based Information Retrieval Systems

  • Conference paper
Advances in Information Retrieval (ECIR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5478))

Included in the following conference series:

Abstract

This paper investigates the use of fuzzy logic mechanisms coming from the database community, namely graded inclusions, to model the information retrieval process. In this framework, documents and queries are represented by fuzzy sets, which are paired with operations like fuzzy implications and T-norms. Through different experiments, it is shown that only some among the wide range of fuzzy operations are relevant for information retrieval. When appropriate settings are chosen, it is possible to mimic classical systems, thus yielding results rivaling those of state-of-the-art systems. These positive results validate the proposed approach, while negative ones give some insights on the properties needed by such a model. Moreover, this paper shows the added-value of this graded inclusion-based model, which gives new and theoretically grounded ways for a user to easily weight his query terms, to include negative information in his queries, or to expand them with related terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bosc, P., Pivert, O.: On the use of tolerant graded inclusions in information retrieval. In: Proceedings of CORIA 2008, pp. 321–336 (2008)

    Google Scholar 

  2. Buell, D.: An analysis of some fuzzy subset applications to information retrieval systems. Fuzzy Sets & Systems 7, 35–42 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kraft, D.H., Pasi, G., Bordogna, G.: Vagueness and uncertainty in information retrieval: how can fuzzy sets help? In: Proceedings of IWRIDL 2006, pp. 1–10 (2006)

    Google Scholar 

  4. Boughanem, M., Loiseau, Y., Prade, H.: Improving document ranking in information retrieval using ordered weighted aggregation and leximin refinement. In: Proceedings of EUSFLAT 2005, pp. 1269–1274 (2005)

    Google Scholar 

  5. Herrera-Viedma, E.: Modeling the retrieval process for an information retrieval system using an ordinal fuzzy linguistic approach. Journal of the American Society for Information Science and Technology 52, 460–475 (2001)

    Article  Google Scholar 

  6. Brini, A., Boughanem, M., Dubois, D.: A model for information retrieval based on possibilistic networks. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 271–282. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Herrera-Viedma, E., López-Herrera, A., Luque, M., Porcel, C.: A fuzzy linguistic IRS model based on a 2-tuple fuzzy linguistic approach. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems 15(2), 225–250 (2007)

    Article  MATH  Google Scholar 

  8. Oussalah, M., Khan, S., Nefti, S.: Personalized information retrieval system in the framework of fuzzy logic. Expert Systems with Applications 35, 423–433 (2008)

    Article  Google Scholar 

  9. Lalmas, M.: Logical models in information retrieval: Introduction and overview. Information Processing & Management 34(1), 19–33 (1998)

    Article  Google Scholar 

  10. Salton, G., Fox, E., Wu, H.: Extended boolean information retrieval. Communications of the ACM 26(12), 1022–1036 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Waller, W., Kraft, D.: A mathematical model of a weighted Boolean retrieval system. Information Processing & Management 15, 235–245 (1979)

    Article  MATH  Google Scholar 

  12. Buell, D., Kraft, D.: Threshold values and Boolean retrieval systems. Information Processing & Management 17, 127–136 (1981)

    Article  MATH  Google Scholar 

  13. Bookstein, A.: Fuzzy requests: an approach to weighted Boolean searches. J. of the American Society for Information Science 31, 240–247 (1980)

    Article  Google Scholar 

  14. Bosc, P., Dubois, D., Pivert, O., Prade, H.: Flexible queries in relational databases – the example of the division operator. Theoretical Comp. Sc. 171, 281–302 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fodor, J., Yager, R.: Fuzzy Set-theoretic Operators and Quantifiers. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets. The Handbook of Fuzzy Sets Series, ch. 1.2, pp. 125–193. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  16. Voorhees, E.: Using WORDNET for Text Retrieval. In: Fellbaum, C. (ed.) WORDNET: An Electronic Lexical Database, pp. 285–303. MIT Press, Cambridge (1998)

    Google Scholar 

  17. Bosc, P., Pivert, O.: On a parameterized antidivision operator for database flexible querying. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 652–659. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bosc, P., Claveau, V., Pivert, O., Ughetto, L. (2009). Graded-Inclusion-Based Information Retrieval Systems. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds) Advances in Information Retrieval. ECIR 2009. Lecture Notes in Computer Science, vol 5478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00958-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00958-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00957-0

  • Online ISBN: 978-3-642-00958-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics