Skip to main content

Revisiting IR Techniques for Collaborative Search Strategies

  • Conference paper
Advances in Information Retrieval (ECIR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5478))

Included in the following conference series:

  • 3346 Accesses

Abstract

This paper revisits some of the established Information Retrieval (IR) techniques to investigate effective collaborative search strategies. We devised eight search strategies that divided labour and shared knowledge in teams using relevance feedback and clustering. We evaluated the performance of strategies with a user simulation enhanced by a query-pooling method. Our results show that relevance feedback is successful at formulating effective collaborative strategies while further effort is needed for clustering. We also measured the extent to which additional members improved the performance and an effect of search progress on the improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hansen, P., Järvelin, K.: Collaborative information retrieval in an information-intensive domain. Information Processing & Management 41(5), 1101–1119 (2004)

    Article  Google Scholar 

  2. IRF (ed.).: Proceedings of the First Information Retrieval Facility Symposium (IRFS), Vienna, Austria, Matrixware (2007)

    Google Scholar 

  3. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In: Proceedings of the 1992 ACM CSCW Conference, pp. 107–114 (1992)

    Google Scholar 

  4. Smyth, B., Balfe, E., Boydell, O., Bradley, K., Briggs, P., Coyle, M., Freyne, J.: A live-user evaluation of collaborative web search. In: Proceedings of the 9th IJCAI Conference, pp. 1419–1424 (2005)

    Google Scholar 

  5. Smeaton, A.F., Lee, H., Foley, C., McGivney, S.: Collaborative video searching on a tabletop. Multimedia System 12(4-5), 375–391 (2007)

    Article  Google Scholar 

  6. Pickens, J., Golovchinsky, G., Shah, C., Qvarfordt, P., Back, M.: Algorithmic mediation for collaborative exploratory search. In: Proceedings of the 31st ACM SIGIR conference, pp. 315–322 (2008)

    Google Scholar 

  7. Morris, M.R., Horvitz, E.: Searchtogether: an interface for collaborative web search. In: Proceedings of the 20th ACM UIST Conference, pp. 3–12. ACM, New York (2007)

    Google Scholar 

  8. Villa, R., Gildea, N., Jose, J.M.: A study of awareness in multimedia search. In: Proceedings of the 8th ACM JCDL Conference, pp. 221–230 (2008)

    Google Scholar 

  9. Joho, H., Hannah, D., Jose, J.M.: Comparing collaborative and independent search in a recall-oriented task. In: Proceedings of the second IIiX Symposium, pp. 89–96. ACM, New York (2008)

    Google Scholar 

  10. Tombros, A., Villa, R., Rijsbergen, C.J.V.: The effectiveness of query-specific hierarchic clustering in information retrieval. Information Processing & Management 38(4), 559–582 (2002)

    Article  MATH  Google Scholar 

  11. Harman, D.: Towards interactive query expansion. In: Proceedings of the 11th ACM SIGIR Conference, pp. 321–331 (1988)

    Google Scholar 

  12. Magennis, M., van Rijsbergen, C.J.: The potential and actual effectiveness of interactive query expansion. In: Proceedings of the 20th ACM SIGIR Conference, pp. 324–332 (1997)

    Google Scholar 

  13. White, R.W., Jose, J.M., van Rijsbergen, C.J., Ruthven, I.: A simulated study of implicit feedback models. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 311–326. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Ruthven, I.: Re-examining the potential effectiveness of interactive query expansion. In: Proceedings of the 26th ACM SIGIR Conference, pp. 213–220 (2003)

    Google Scholar 

  15. Allan, J.: Hard track overview in trec 2005 high accuracy retrieval from documents. In: Proceedings of the 14th TREC, pp. 500–266. NIST Special Publication, SP (2005)

    Google Scholar 

  16. Ounis, I., Lioma, C., Macdonald, C., Plachouras, V.: Research directions in Terrier: a search engine for advanced retrieval on the web. Novatica/UPGRADE Special Issue on Web Information Access 8(1), 49–56 (2007)

    Google Scholar 

  17. Carterette, B., Pavlu, V., Kanoulas, E., Aslam, J.A., Allan, J.: Evaluation over thousands of queries. In: Proceedings of the 31st ACM SIGIR conference, pp. 651–658 (2008)

    Google Scholar 

  18. Iwayama, M.: Relevance feedback with a small number of relevance judgements: incremental relevance feedback vs. document clustering. In: Proceedings of the 23rd ACM SIGIR conference, pp. 10–16 (2000)

    Google Scholar 

  19. Zamir, O., Etzioni, O.: Grouper: A dynamic clustering interface to web search results. In: Proceedings of the 8th International WWW Conference (1999)

    Google Scholar 

  20. Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In: Proceedings of the 25th ACM SIGIR conference, pp. 299–306 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joho, H., Hannah, D., Jose, J.M. (2009). Revisiting IR Techniques for Collaborative Search Strategies. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds) Advances in Information Retrieval. ECIR 2009. Lecture Notes in Computer Science, vol 5478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00958-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00958-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00957-0

  • Online ISBN: 978-3-642-00958-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics