Skip to main content

Monadic Second-Order Logic for Graphs: Algorithmic and Language Theoretical Applications

  • Conference paper
Language and Automata Theory and Applications (LATA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5457))

Abstract

This tutorial will present an overview of the use of Monadic Second-Order Logic to describe sets of finite graphs and graph transformations, in relation with the notions of tree-width and clique-width. It will review applications to the construction of algorithms, to Graph Theory and to the extension to graphs of Formal Language Theory concepts.

Supported by the GRAAL project of “Agence Nationale pour la Recherche”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 313–400. World Scientific, Singapore (1997)

    Chapter  Google Scholar 

  2. Courcelle, B.: Graph structure and monadic second-order logic. In: Book in preparation. Cambridge University Press, Cambridge (2009), http://www.labri.fr/perso/courcell/ActSci.html

    Google Scholar 

  3. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theor. Comput. Sci. 109, 49–82 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  5. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  6. Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33, 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Makowsky, J.: Algorithmic uses of the feferman-vaught theorem. Ann. Pure Appl. Logic 126, 159–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Courcelle, B. (2009). Monadic Second-Order Logic for Graphs: Algorithmic and Language Theoretical Applications. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2009. Lecture Notes in Computer Science, vol 5457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00982-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00982-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00981-5

  • Online ISBN: 978-3-642-00982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics