Skip to main content

Bounded Hairpin Completion

  • Conference paper
Language and Automata Theory and Applications (LATA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5457))

  • 872 Accesses

Abstract

We consider a restricted variant of the hairpin completion called bounded hairpin completion. The hairpin completion is a formal operation inspired from biochemistry. Applied to a word encoding a single stranded molecule x such that either a suffix or a prefix of x is complementary to a subword of x, hairpin completion produces a new word z, which is a prolongation of x to the right or to the left by annealing.

The restriction considered here concerns the length of all prefixes and suffixes that are added to the current word by hairpin completion. They cannot be longer than a given constant. Closure properties of some classes of formal languages under the non-iterated and iterated bounded hairpin completion are investigated. We also define the inverse operation, namely bounded hairpin reduction, and consider the set of all primitive bounded hairpin roots of a regular language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, B.S.: Context-sensitive grammars generating context-free languages. In: Automata, Languages and Programming ICALP 1972, pp. 501–506. North-Holland, Amsterdam (1972)

    Google Scholar 

  2. Book, R., Otto, F.: String-Rewriting Systems. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  3. Bottoni, P., Labella, A., Manca, V., Mitrana, V.: Superposition based on Watson-Crick-like complementarity. Theory of Computing Systems 39, 503–524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheptea, D., Martín-Vide, C., Mitrana, V.: A new operation on words suggested by DNA biochemistry: hairpin completion. In: Transgressive Computing, pp. 216–228 (2006)

    Google Scholar 

  5. Deaton, R., Murphy, R., Garzon, M., Franceschetti, D.R., Stevens, S.E.: Good encodings for DNA-based solutions to combinatorial problems. In: Proc. of DNA-based computers II. DIMACS Series, vol. 44, pp. 247–258 (1998)

    Google Scholar 

  6. Garzon, M., Deaton, R., Neathery, P., Murphy, R.C., Franceschetti, D.R., Stevens, S.E.: On the encoding problem for DNA computing. In: The Third DIMACS Workshop on DNA-Based Computing, pp. 230–237. Univ. of Pennsylvania (1997)

    Google Scholar 

  7. Garzon, M., Deaton, R., Nino, L.F., Stevens, S.E., Wittner, M.: Genome encoding for DNA computing. In: Proc. Third Genetic Programming Conference, Madison, MI, pp. 684–690 (1998)

    Google Scholar 

  8. Hofbauer, D., Waldmann, J.: Deleting string-rewriting systems preserve regularity. Theoretical Computer Science 327, 301–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Information and Computation 131, 47–61 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kari, L., Konstantinidis, S., Sosík, P., Thierrin, G.: On hairpin-free words and languages. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 296–307. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Manea, F., Martín-Vide, C., Mitrana, V.: On some algorithmic problems regarding the hairpin completion. Discrete Applied Mathematics (in press), doi:10.1016/j.dam.2007.09.022

    Google Scholar 

  12. Manea, F., Mitrana, V.: Hairpin completion versus hairpin reduction. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 532–541. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Manea, F., Mitrana, V., Yokomori, T.: Two complementary operations inspired by the DNA hairpin formation: completion and reduction. Theoretical Computer Science (in press), doi:10.1016/j.tcs.2008.09.049

    Google Scholar 

  14. Manea, F., Mitrana, V., Yokomori, T.: Some remarks on the hairpin completion. In: Proc. 12th International Conference on Automata and Formal Languages, pp. 302–313 (2008)

    Google Scholar 

  15. Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534 (1969)

    MathSciNet  MATH  Google Scholar 

  16. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  17. Ruohonen, K.: On circular words and (ω * + ω)-powers of words. Elektr. Inform. und Kybern. E.I.K. 13, 3–12 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Sakamoto, K., Gouzu, H., Komiya, K., Kiga, D., Yokoyama, S., Yokomori, T., Hagiya, M.: Molecular computation by DNA hairpin formation. Science 288, 1223–1226 (2000)

    Article  Google Scholar 

  19. Salomaa, A.: Formal Languages. Academic Press, London (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ito, M., Leupold, P., Mitrana, V. (2009). Bounded Hairpin Completion. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2009. Lecture Notes in Computer Science, vol 5457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00982-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00982-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00981-5

  • Online ISBN: 978-3-642-00982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics