Skip to main content

Finding Balanced Incomplete Block Designs with Metaheuristics

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2009)

Abstract

This paper deals with the generation of balanced incomplete block designs (BIBD), a hard constrained combinatorial problem with multiple applications. This problem is here formulated as a combinatorial optimization problem (COP) whose solutions are binary matrices. Two different neighborhood structures are defined, based on bit-flipping and position-swapping. These are used within three metaheuristics, i.e., hill climbing, tabu search, and genetic algorithms. An extensive empirical evaluation is done using 86 different instances of the problem. The results indicate the superiority of the swap-based neighborhood, and the impressive performance of tabu search. This latter approach is capable of outperforming two techniques that had reported the best results in the literature (namely, a neural network with simulated annealing and a constraint local search algorithm).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colbourn, C., Dinitz, J.: The CRC handbook of combinatorial designs. CRC Press, Boca Raton (1996)

    Book  MATH  Google Scholar 

  2. van Lint, J., Wilson, R.: A Course in Combinatorics. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  3. Mead, R.: Design of Experiments: Statistical Principles for Practical Applications. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  4. Buratti, M.: Some (17q, 17, 2) and (25q, 25, 3)BIBD constructions. Designs, Codes and Cryptography 16(2), 117–120 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lan, L., Tai, Y.Y., Lin, S., Memari, B., Honary, B.: New constructions of quasi-cyclic LDPC codes based on special classes of BIDBs for the AWGN and binary erasure channels. IEEE Transactions on Communications 56(1), 39–48 (2008)

    Article  Google Scholar 

  6. Corneil, D.G., Mathon, R.: Algorithmic techniques for the generation and analysis of strongly regular graphs and other combinatorial configurations. Annals of Discrete Mathematics 2, 1–32 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gibbons, P., Östergård, P.: Computational methods in design theory. In: [1], pp. 730–740

    Google Scholar 

  8. Bofill, P., Guimerà, R., Torras, C.: Comparison of simulated annealing and mean field annealing as applied to the generation of block designs. Neural Networks 16(10), 1421–1428 (2003)

    Article  Google Scholar 

  9. Prestwich, S.: A local search algorithm for balanced incomplete block designs. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 53–64. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Cochran, W.G., Cox, G.M.: Experimental Design. John Wiley, New York (1957)

    MATH  Google Scholar 

  11. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical Research, 3rd edn. Oliver & Boy (1949)

    Google Scholar 

  12. Fisher, R.A.: An examination of the different possible solutions of a problem in incomplete blocks. Annals of Eugenics 10, 52–75 (1940)

    Article  MathSciNet  Google Scholar 

  13. Whitaker, D., Triggs, C.M., John, J.A.: Construction of block designs using mathematical programming. J. Roy. Statist. Soc. B 52(3), 497–503 (1990)

    MathSciNet  Google Scholar 

  14. John, J.A., Whitaker, D., Triggs, C.M.: Construction of cyclic designs using integer programming. Journal of statistical planning and inference 36(2), 357–366 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zergaw, D.: A sequential method of constructing optimal block designs. Australian & New Zealand Journal of Statistics 31, 333–342 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Tjur, T.: An algorithm for optimization of block designs. Journal of Statistical Planning and Inference 36, 277–282 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Flener, P., Frisch, A.M., Hnich, B., Kzltan, Z., Miguel, I., Walsh, T.: Matrix modelling. In: CP 2001 Workshop on Modelling and Problem Formulation. International Conference on the Principles and Practice of Constraint Programming (2001)

    Google Scholar 

  18. Puget, J.F.: Symmetry breaking revisited. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 446–461. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Meseguer, P., Torras, C.: Exploiting symmetries within constraint satisfaction search. Artif. Intell. 129(1-2), 133–163 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Prestwich, S.: Negative effects of modeling techniques on search performance. Annals of Operations Research 18, 137–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Street, D., Street, A.: Partially balanced incomplete block designs. In: [1], pp. 419–423

    Google Scholar 

  22. Mullin, C., Gronau, H.: PBDs and GDDs: The basics. In: [1], pp. 185–193

    Google Scholar 

  23. Wallis, W.D.: Regular graph designs. Journal of Statistical Planning and Inference 51, 272–281 (1996)

    Article  MATH  Google Scholar 

  24. Bofill, P., Torras, C.: MBMUDs: a combinatorial extension of BIBDs showing good optimality behaviour. Journal of Statistical Planning and Inference 124(1), 185–204 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chuang, H.Y., Tsai, H.K., Kao, C.Y.: Optimal designs for microarray experiments. In: 7th International Symposium on Parallel Architectures, Algorithms, and Networks, Hong Kong, China, pp. 619–624. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  26. Morales, L.B.: Constructing difference families through an optimization approach: Six new BIBDs. Journal of Combinatorial Design 8(4), 261–273 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Angelis, L.: An evolutionary algorithm for A-optimal incomplete block designs. Journal of Statistical Computation and Simulation 73(10), 753–771 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rodríguez Rueda, D., Cotta, C., Fernández, A.J. (2009). Finding Balanced Incomplete Block Designs with Metaheuristics. In: Cotta, C., Cowling, P. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2009. Lecture Notes in Computer Science, vol 5482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01009-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01009-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01008-8

  • Online ISBN: 978-3-642-01009-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics