Abstract
In order to optimize turbo machine components it is necessary to describe the behaviour of multimodal objective functions (OF). Instead very time-consuming evaluations using a three-dimensional Navier–Stokes solver have to be performed to get the characteristics of these OF. In this study an Artificial Neural Network (ANN) is considered to use it as a performance predictor with the view to replace the evaluation of the objective function to speed up the optimization process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aungier, R. H. (2000). Centrifugal compressors. New York: ASME Press.
Joos, F., & Bartold, A. (2008). Optimization of a centrifugal impeller using evolutionary algorithms. ASME Paper GT2008–50805.
Lüdke, K. H. (2004). Process centrifugal compressors. Berlin: Springer.
Rechenberg, I. (1994) Evolutionsstrategie ’94. Stuttgart: Frommann-Holzboog.
Rojas, R. (1993). Theorie der Neuronalen Netze. Berlin: Springer.
Schwefel, H.-P. (1995). Evolution and optimum seeking. New York: Wiley.
Weicker, K. (2002). Evolutionäre Algorithmen. Stuttgart: Teubner.
Zell, A. (1997). Simulation Neuronaler Netze. München: Oldenbourg.
Zell, A., Mamier, G., Vogt, M., Mache, N., Hübner, R., Döring, S., et al. (n.d.). SNNS user manual, version 4.2 (pp. 145–150). University of Stuttgart, University of Tübingen.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Meier, R., Joos, F. (2009). Optimization of Centrifugal Impeller Using Evolutionary Strategies and Artificial Neural Networks. In: Fink, A., Lausen, B., Seidel, W., Ultsch, A. (eds) Advances in Data Analysis, Data Handling and Business Intelligence. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01044-6_65
Download citation
DOI: https://doi.org/10.1007/978-3-642-01044-6_65
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01043-9
Online ISBN: 978-3-642-01044-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)