Skip to main content

Motif-Based Classification of Time Series with Bayesian Networks and SVMs

  • Conference paper
  • First Online:
Advances in Data Analysis, Data Handling and Business Intelligence

Abstract

Classification of time series is an important task with many challenging applications like brain wave (EEG) analysis, signature verification or speech recognition. In this paper we show how characteristic local patterns (motifs) can improve the classification accuracy. We introduce a new motif class, generalized semi-continuous motifs. To allow flexibility and noise robustness, these motifs may include gaps of various lengths, generic and more specific wildcards. We propose an efficient algorithm for mining generalized sequential motifs. In experiments on real medical data, we show how generalized semi-continuous motifs improve the accuracy of SVMs and Bayesian Networks for time series classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In 20th International Conference on Very Large Data Bases (pp. 487–499).

    Google Scholar 

  • Bodon, F. (2005). A trie-based APRIORI implementation for mining frequent item sequences. In 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations (pp. 56–65). Chicago, IL.

    Google Scholar 

  • Borgelt, C. (2003). Efficient implementations of apriori and eclat. In Workshop of Frequent Item Set Mining Implementations. Melbourne, FL, USA.

    Google Scholar 

  • Borgelt, C. (2004). Recursion pruning for the apriori algorithm. In 2nd Workshop of Frequent Item Set Mining Implementations. Brighton, UK.

    Google Scholar 

  • Buhler, J., & Tompa, M. (2002). Finding motifs using random projections. Journal of Computational Biology, 9(2), 225–242.

    Article  Google Scholar 

  • Dzeroski, S., Slavkov, I., Gjorgjioski, V., & Struyf, J. (2006). Analysis of time series data with predictive clustering trees. In 5th International Workshop on Knowledge Discovery in Inductive Databases (pp. 47–58). Berlin, Germany.

    Google Scholar 

  • Ferreira, P. G., & Azevedo, P. J. (2005). Protein sequence classification through relevant sequence mining and Bayes classifiers. In 12th Portuguese Conference on AI.

    Google Scholar 

  • Ferreira, P. G., Azevedo, P. J., Silva, C. G., & Brito, R. M. M. (2006). Mining approximate motifs in time series. In 9th International Conference on Discovery Science. Barcelona.

    Google Scholar 

  • Futschik, M. E., & Carlisle, B. (2005). Noise-robust soft clustering of gene expression time-course data. Bioinformatics and Computational Biology, 3, 965–988.

    Article  Google Scholar 

  • Gaul, W., & Schmidt-Thieme, L. (2001). Mining generalized association rules for sequential and path data. In IEEE ICMD (pp. 593–596). San Jose.

    Google Scholar 

  • Gruber, C., Coduro, M., & Sick, B. (2006). Signature verification with dynamic RBF networks and time series motifs. In 10th International Workshop on Frontiers in Handwriting Recognition.

    Google Scholar 

  • Hipp, J., Myka, A., Wirth, R., & Gntzer, U. (1998). A new algorithm for faster mining of generalized association rules. In PKDD (pp. 74–82). Nantes, France.

    Google Scholar 

  • Jensen, K. L., Styczynski, M. P., Rigoutsos, I., & Stephanopoulos, G. N. (2006). A generic motif discovery algorithm for sequential data. Bioinformatics, 22, 21–28.

    Article  Google Scholar 

  • Keogh, E. J., & Pazzani, M. J. (2000). Scaling up dynamic time warping for datamining applications. In KDD (pp. 285–289). Boston, MA, USA.

    Google Scholar 

  • Knorr, T. (2006a). Identifying patients at risk: Mining dialysis treatment data. In 2nd German Japanese Symposium on Classification. Berlin.

    Google Scholar 

  • Knorr, T. (2006b). Motif discovery in multivariate time series and application to hemodialysis treatment data. MSc Thesis, Albert-Ludwigs-University, Freiburg.

    Google Scholar 

  • Kunik, V., Solan, Z., Edelman, S., Ruppin, E., & Horn, D. (2005). Motif extraction and protein classification. In IEEE Computational Systems Bioinformatics Conference.

    Google Scholar 

  • Lin, J., Keogh, E., Lonardi, S., & Chiu, B. (2003). A symbolic representation of time series, with implications for streaming algorithms. In 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

    Google Scholar 

  • Manmatha, R., & Rath, T. M. (2003). Indexing of handwritten historical documents – Recent progress. In Symposium on Document Image Understanding Technology (pp. 77–85). Greenbelt, MD.

    Google Scholar 

  • Marcel, S., & Millan, J. R. (2007). Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 743–752.

    Article  Google Scholar 

  • Patel, P., Keogh, E., Lin, J., & Lonardi, S. (2002). Mining motifs in massive time series databases. In IEEE ICDM.

    Google Scholar 

  • Pei, J., Han, J., Wang, J., Pinto, H., Chen, Q., Dayal, U., et al. (2004). Mining sequential patterns by pattern-growth: The prefixspan approach. IEEE Transactions on Knowledge and Data Engineering, 16, 1424–1440.

    Article  Google Scholar 

  • Pramudiono, I., & Kitsuregawa, M. (2004). FP-tax: Tree structure based generalized association rule mining. In ACM/SIGMOD International Workshop on Research Issues on Data Mining and Knowledge Discovery (pp. 60–63). Paris.

    Google Scholar 

  • Ratanamahatana, C. A., & Keogh, E. (2004a). Everything you know about dynamic time warping is wrong. In SIGKDD Workshop on Mining Temporal and Sequential Data.

    Google Scholar 

  • Ratanamahatana, C. A., & Keogh, E. (2004b). Making time-series classification more accurate using learned constraints. In SIAM International Conference on Data Mining.

    Google Scholar 

  • Rath, T. M., & Manmatha, R. (2003). Word image matching using dynamic time wrapping. CVPR, II, 521–527.

    Google Scholar 

  • Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-26, 43–49.

    Google Scholar 

  • Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. In EDBT. Avignon, France.

    Google Scholar 

  • Sriphaew, K., & Theeramunkong, T. (2002). A new method for finding generalized frequent itemsets in generalizes association rule mining. In ISCC (pp. 1040–1045). Taormina, Italy.

    Google Scholar 

  • Sriphaew, K., & Theeramunkong, T. (2004). Fast algorithms for mining generalized frequent patterns of generalized association rules. IEICE Transactions on Information and Systems, E87-D(3), 761–770.

    Google Scholar 

  • Yankov, D., Keogh, E., Medina, J., Chiu, B., & Zordan, V. (2007). Detecting time series motifs under uniform scaling. In KDD (pp. 844–853). San Jose, CA, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztian Buza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buza, K., Schmidt-Thieme, L. (2009). Motif-Based Classification of Time Series with Bayesian Networks and SVMs. In: Fink, A., Lausen, B., Seidel, W., Ultsch, A. (eds) Advances in Data Analysis, Data Handling and Business Intelligence. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01044-6_9

Download citation

Publish with us

Policies and ethics