
ar
X

iv
:0

90
1.

38
82

v1
 [

cs
.D

M
]

 2
5

Ja
n

20
09

Graph-based Local Elimination Algorithms in

Discrete Optimization⋆

Oleg Shcherbina

Faculty of Mathematics,
University of Vienna
Nordbergstrasse 15, A-1090 Vienna,
Austria
oleg.shcherbina@univie.ac.at

1 Introduction

The use of discrete optimization (DO) models and algorithms makes it pos-
sible to solve many practical problems in scheduling theory, network opti-
mization, routing in communication networks, facility location, optimization
in enterprise resource planning, and logistics (in particular, in supply chain
management [36]). The field of artificial intelligence includes aspects like the-
orem proving, SAT in propositional logic (see [23], [50]), robotics problems,
inference calculation in Bayesian networks [66], scheduling, and others.

Many real-life DO problems contain a huge number of variables and/or
constraints that make the models intractable for currently available DO
solvers. NP -hardness refers to the worst-case complexity of problems. Recog-
nizing problem instances that are better (and easier for solving) than these
”worst cases” is a rewarding task given that better algorithms can be used for
these easy cases.

Complexity theory has proved that universality and effectiveness are con-
tradictory requirements to algorithm complexity. But the complexity of some
class of problems decreases if the class may be divided into subsets and the
special structure of these subsets can be used in the algorithm design.

To meet the challenge of solving large scale DO problems (DOPs) in
reasonable time, there is an urgent need to develop new decomposition ap-
proaches [22], [82], [75]. Large-scale DOPs are characterized not only by huge
size but also by special or sparse structure. The block form of many DO
problems is usually caused by the weak connectedness of subsystems of real
systems. One of the first examples of large sparse linear programming (LP)
problems which Dantzig started to study was a class of staircase LP prob-

⋆ Research supported by FWF (Austrian Science Funds) under the project P17948-
N13.

http://arxiv.org/abs/0901.3882v1

2 Oleg Shcherbina

lems for dynamic planning [27], [29], [28]. Further examples of staircase linear
programs (see Fourer [42]) for multiperiod planning, scheduling, and as-
signment, and for multistage structural design, are included in a set of stair-
case test problems collected by Ho & Loute [57]. Staircase linear programs
have also been derived in connection with linearly constrained optimal control
and stochastic programming [103]. Problems of optimal hotel apartments as-
signment, linear dynamic programming, labor resources allocation, control on
hierarchic structures (usually having tree-like structure), multistage integer
stochastic programming, network problems may be considered as examples of
DO problems which have staircase structure (see [89], [90]). The well known
SAT problem stems from classical investigations by logicians of propositional
satisfiability and has over 90 years of history. It is possible to represent a SAT
problem as a sparse DO problem [58]. Some applied facility location problems
can be formulated as set covering problems, set packing problems, node pack-
ing problems [73]. Another class of sparse DO problems is a production lot-
sizing problem [73]. The frequency assignment problem (FAP) [65] in mobile
telephone systems communication is a hard problem as it is closely related to
the graph coloring problem. One of the well known decomposition approaches
to solving DOPs is Lagrangean decomposition that consists of isolating sets
of constraints to obtain separate and easy to solve DO problems. Lagrangean
decomposition removes the complicating constraints from the constraint set
and inserts them into the objective function. Most Lagrangean decomposi-
tion methods deal with special row structures. Block angular structures with
complicating variables and with complicating variables and constraints can be
decomposed using Benders decomposition [13] and cross decomposition [99].
The Dantzig-Wolfe decomposition principle of LP has its equivalent in integer
programming [98]. This approach uses the reformulation that gives rise to an
integer master problem, whose typically large number of variables is dealt with
implicitly by using an integer programming column generation procedure, also
known as branch-and-price algorithm [9] that allows solving large-scale DOPs
in recent years. Nemhauser ([74], p. 9) mentioned, however, that

... the overall idea of using branch and bound with linear programming
relaxation has not changed.

Usually, DOPs from applications have a special structure, and the matrices
of constraints for large-scale problems have a lot of zero elements (sparse ma-
trices). Among decomposition approaches appropriate for solving such prob-
lems we mention poorly known local decomposition algorithms using the spe-
cial block matrix structure of constraints and half-forgotten nonserial dy-
namic programming algorithms (NSDP) (Bertele & Brioschi [14], [15],
[16], Dechter [31], [32], [33], [34], Hooker [58]) which can exploit sparsity
in the dependency graph of a DOP and allow to compute a solution in stages
such that each of them uses results from previous stages.

Recently, there has been growing interest in graph-based approaches to
decomposition [19]; one of them is tree decomposition (TD). Courcelle

Local Elimination Algorithms 3

[25] and Arnborg et al. [6] showed that several NP -hard problems posed
in monadic second-order logic can be solved in polynomial time using dy-
namic programming techniques on input graphs with bounded treewidth.
Thus graph-based decomposition approaches have gained importance. Graph-
based structural decomposition techniques, e.g., nonserial dynamic program-
ming (NSDP) (Bertele, Brioschi [16], Esogbue & Marks [37], Hooker
[58], Martelli & Montanari [68], Mitten & Nemhauser [71], Neumaier &
Shcherbina [76],Rosenthal [86], Shcherbina [91]),Wilde & Beightler
[101] and its modifications (bucket elimination [32], Seidel’s invasion method
[87]), tree decomposition combined with dynamic programming [35], [21] and
its variants [77], hypertree [47] and hinge decomposition [60], [49] are promis-
ing decomposition approaches that allow exploiting the structure of discrete
problems in constraint satisfaction (CS) [43] and DO.

It is important that aforementioned methods use just the local informa-
tion (i.e., information about elements of given element’s neighborhood) in a
process of solving discrete problems. It is possible to propose a class of lo-
cal elimination algorithms as a general framework that allows to calculate
some global information about a solution of the entire problem using lo-
cal computations [62], [66], [95]. Note that a main feature in aforementioned
problems is the locality of information, a definition of elements’ neighborhoods
and studying them.

The use of local information (see [104], [105], [39], [94], [97]) is very impor-
tant in studying complex discrete systems and in the development of decom-
position methods for solving large sparse discrete problems; these problems
simultaneously belong to the fields of discrete optimization [73], [40], [78], [79],
[88], artificial intelligence [32], [48], [72], [81], and databases [10]. In linear al-
gebra, multifrontal techniques for solving sparse systems of linear equations
were developed (see [85]); these methods are also of the decomposition nature.
In [104], local algorithms for computing information are introduced. A local
algorithm A examines the elements in the order specified by an ordering algo-
rithm Aπ , calculates the function φ whose value at each step determines the
form of the information marks, and labels the element using local information
about the elements in its neighborhood. The function φ that induces the al-
gorithm depends on two variables: the first ranges over the set of all elements
and the second ranges over the set of neighborhoods. Local decomposition
algorithms (see [89], [90]) in DO problems have a specific feature. Namely,
rather than calculating predicates, they use Bellman’s optimality principle
[12] to find optimal solutions of the subproblems corresponding to blocks of
the DO problem. A step of the local algorithm A changes the neighborhood
and replaces the index p by p+ 1 (however, one can increment the index by
an arbitrary number replacing Sp by Sp+ρ; at each step of the algorithm, for
every fixed set of variables of the boundary ring, the values of the variables of
the corresponding neighborhood are stored, which is an important difference
of the local algorithm A from A: information about variables in the solutions

4 Oleg Shcherbina

of the subproblems is stored rather than information about the predicates.
Zhuravlev proposed to call it indicator information.

Tree and branch decomposition algorithms have been shown to be effective
for DO problems like the traveling salesman problem [24], frequency assign-
ment [65] etc. (see a survey paper [55]). A paper [4] surveys algorithms that
use tree decompositions. Most of works based on tree decomposition approach
only present theoretical results [61], see the recent surveys [55], [92]. Thus these
methods are not yet recognized tools of operations research practitioners.

Some implementations of NSDP are known [16], [38], however, generally,
it remains some ”obscure” tool for operations research modellers. Usually,
tree decomposition approaches and NSDP are considered in the literature
separately, without reference to the close relation between these methods. We
try to indicate a close relation between these methods.

A need to solve large-scale discrete problems with special structure using
graph-based structural decomposition methods provides the main motivation
for this chapter. Here we try to answer a number of questions about tree
decomposition and NSDP in solving DO problems. What are they? How and
where can they be applied? What consists a connection between different
structural decomposition methods, such as tree decomposition and nonserial
dynamic programming?

The aim of this paper is to provide a review of structural decomposition
methods and to give a unified framework in the form of local elimination
algorithms [94]. We propose here the general approach which consists of
viewing a decomposition of some DO problem as being represented by a DAG
whose nodes represent subproblems that only contain local information. The
nodes are connected by arcs that represent the dependency of the local infor-
mation in the subproblems. A subproblem that is higher in the hierarchy may
use the information (or knowledge) obtained in the dependent subproblems.

This paper is organized as follows: In section 2 we introduce local elimina-
tion algorithms for solving discrete problems. In Section 3 we survey necessary
terminology and notions for discrete optimization problems and their graph
representations. In Section 4 we consider local variable elimination schemes
for solving DO problems with constraints and discuss a classification of dy-
namic programming (DP) computational procedure. Elimination Game is in-
troduced. Application of the bucket elimination algorithm from CS to solving
DO problems is done. Then, in Section 5, we consider a local block elimination
scheme and related notions. As a promising abstraction approach of solving
DOPs we define clustering that merges several variables into a single meta-
variable. This allows us to create a quotient (condensed) graph and apply a
local block elimination algorithm. In Section 6 a tree decomposition scheme is
introduced. Connection of of the local elimination algorithmic schemes with
tree decomposition and a way of transforming the DAG of computational local
elimination procedure to tree decomposition are discussed.

Local Elimination Algorithms 5

2 Local elimination algorithms for solving discrete

problems

The structure of discrete optimization problems is determined either by the
original elements (e.g., variables) with a system of neighborhoods specified
for them and with the order of searching through those elements using a lo-
cal elimination algorithm or by various derived structures (e.g., block or
tree-block structures). Both original and derived structures can be specified
by the so called structural graph. The structural graph can be the inter-
action graph of the original elements (for example, between the variables of
the problem) or the quotient [45] (condensed [51]) graph. The quotient
graph can be obtained by merging a set of original elements (for example,
a subgraph) into a condensed element. The original subset (subgraph) that
formed the condensed element is called the detailed graph of this element.
A local elimination algorithm (LEA) [94] eliminates local elements of the prob-
lem’s structure defined by the structural graph by computing and storing local
information about these elements in the form of new dependencies added to
the problem. Thus, the local elimination procedure consists of two parts:

A. The forward part eliminates elements, computes and stores local solu-
tions, and finally computes the value of the objective function;

B. The backward part finds the global solution of the whole problem using
the tables of local solutions; the global solution gives the optimal value
of the objective function found while performing the forward part of the
procedure.

The LEA analyzes a neighborhood Nb(x) of the current element x in the
structural graph of the problem, applies an elimination operator (which
depends on the particular problem) to that element, calculates the function
h(Nb(x)) that contains local information about x, and finds the local so-
lution x∗(Nb(x)). Next, the element x is eliminated, and a clique is created
from the elements of Nb(x). The elimination of elements and the creation of
cliques changes the structural graph and the neighborhoods of elements. The
backward part of the local elimination algorithm reconstructs the solution of
the whole problem based on the local solutions x∗(Nb(x)).

The algorithmic scheme of the LEA is a DAG in which the vertices cor-
respond to the local subproblems and the edges reflect the informational de-
pendence of the subproblems on each other.

3 Discrete optimization problems and their graph

representations

3.1 Notions and definitions

Consider a sparse DOP in the following form

6 Oleg Shcherbina

F (x1, x2, . . . , xn) =
∑

k∈K

fk(X
k) → max (1)

subject to the constraints

gi(XSi
) Ri 0, i ∈ M = {1, 2, . . . ,m}, (2)

xj ∈ Dj , j ∈ N = {1, . . . , n}, (3)

where
X = {x1, . . . , xn} is a set of discrete variables, Xk ⊆ {x1, x2, . . . , xn}, k ∈
K = {1, 2, . . . , t} , t – number of components in the objective function, Si ⊆
{1, 2, . . . , n}, Ri ∈ {≤,=,≥}, i ∈ M ; Dj is a finite set of admissible values
of variable xj , j ∈ N . Functions fk(X

k), k ∈ K are called components of
the objective function and can be defined in tabular form. We use here the
notation: if S = {j1, . . . , jq} then XS = {xj1 , . . . , xjq}.
In order to avoid complex notation, without loss of generality, we consider
further a DOP with linear constraints and binary variables:

max
X

f(X) = max
X

∑

k∈K

fk(X
k), (4)

subject to
AiSi

XSi
≤ bi, i ∈ M = {1, 2, . . . ,m}, (5)

xj = 0, 1, j ∈ N = {1, . . . , n}. (6)

We shall consider further a linear objective function (7):

f(x1, . . . , xn) = f(X) = CNXN =

n
∑

j=1

cjxj → max (7)

Definition 1. [16]. Variables x ∈ X and y ∈ X interact in DOP with con-
straints (we denote x ∼ y) if they both appear either in the same component of
the objective function, or in the same constraint (in other words, if variables
are both either in a set Xk, or in a set XSi

).

Introduce a graph representation of the DOP. Description of the DOP struc-
ture may be done with various detailization. The structural graph of the DOP
defines which variables are in which constraints. Structure of a DOP can be
defined either by interaction graph of initial elements (variables in the DOP)
or by various derived structures, e.g., block structures, block-tree structures
defined by so called quotient (condensed or compressed [7], [8], [54]) graph.

Concrete choice of a structural graph of the DOP defines different local
elimination schemes: nonserial dynamic programming, block decomposition,
tree decomposition etc.

If the DOP is divided into blocks corresponding to subsets of variables
(meta-variables) or to subsets of constraints (meta-constraints), then block

Local Elimination Algorithms 7

structure can be described by a structural quotient (condensed) graph, whose
meta-nodes correspond to subsets of the variables of blocks and meta-edges
correspond to adjacent blocks (see below, in section 5.1).

An interaction graph [16] (dependency graph by HOOKER [58])
represents a structure of the DOP in a natural way.

Definition 2. [16]. Interaction graph of the DOP is an undirected graph
G = (X,E), such that

1. Vertices X of G correspond to variables of the DOP;
2. Two vertices of G are adjacent iff corresponding variables interact.

Further, we shall use the notion of vertices that correspond one-to-one to
variables.

Definition 3. Set of variables interacting with a variable x ∈ X is denoted
by Nb(x) and called the neighborhood of the variable x. For corresponding
vertices a neighborhood of a vertex x is a set of vertices of interaction graph
that are linked by edges with x. Denote the latter neighborhood as NbG(x).

Introduce the following notions:

1. Neighborhood of a set S ⊆ X , NbG(S) =
⋃

x∈S NbG(x) − S.
2. Closed neighborhood of a set S ⊆ X , NbG[S] = NbG(S) ∪ S.

4 Local variable elimination algorithms in discrete

optimization

4.1 Nonserial dynamic programming and
classification of DP formulations

NSDP exploits only local computations to solve global discrete optimization
problems and is, therefore, a particular instance of local elimination algorithm.
It appeared in 1961 with Aris [3] (see [11], [14], [15], [71]) but is poorly
known to the optimization community. This approach is used in Artificial
Intelligence under the names ”Variable Elimination” or ”Bucket Elimination”
[32]. NSDP being a natural and general decomposition approach to sparse
problems solving, considers a set of constraints and an objective function as
recursively computable function [58]. This allows to compute a solution in
stages such that each of them uses results from previous stages. This requires
a reduced effort to find the solution.
Thus, the DP algorithm can be applied to find the optimum of the entire
problem by using the connected optimizations of the smaller DO subproblems
with the aid of existing optimization solvers.

It is worth noting that NSDP is implicit in Hammer and Rudeanu’s ”basic
method” for pseudoboolean optimization [52]. Crama, Hansen, and Jau-
mard [26] discovered that the basic method can exploit the structure of a

8 Oleg Shcherbina

DOP with the usage of so-called co-occurrence graph (interaction graph).
It was found that the complexity of the algorithm depends on induced width
of this graph, which is defined for a given ordering of the variables. Consider-
ation of the variables in the right order may result in a smaller induced width
and faster solution [59].
In [16] mostly DO problems without constraints were considered. Here, we
consider an application of NSDP variable elimination algorithm to solving
DO problems with constraints.

One of the most useful graph-based interpretations is a representation
of computational DP procedure as a direct acyclic graph (DAG) [93] whose
vertices are associated with subproblems and whose edges express information
interdependence between subproblems.

Every DP algorithm has an underlying DAG structure that usually is
implicit [30]: the dependencies between subproblems in a DP formulation can
be represented by a DAG. Each node in the DAG represents a subproblem.
A directed edge from node A to node B indicates that the solution to the
subproblem represented by node A is used to compute the solution to the
subproblem represented by node B (Fig.1). The DAG is explicit only when
we have a graph optimization problem (say, a shortest path problem). Having
nodes u1, . . . , uk point to v means ”subproblem v can only be solved once the
solutions to u1, . . . , uk are known” (Fig. 2). Thus, the DP formulation can

BA

Fig. 1. Precedence of subproblems A and B.

be described by the DAG of the computational procedure of a DP algorithm
(underlying DAG [30]). Li & Wah [100] proposed to classify various DP
computational procedures or DP formulations on the basis of the dependencies
between subproblems from the underlying DAG.

The nodes of the DAG can be organized into levels such that subprob-
lems at a particular level depend only on subproblems at previous levels. In
this case, the DP procedure (formulation) can be categorized as follows. If
subproblems at all levels depend only on the results of subproblems at the
immediately preceding levels, the procedure (formulation) is called a serial
DP procedure (formulation), otherwise, it is called a nonserial DP procedure
(formulation).

Example 1. The simplest optimization problem is the serial unconstrained
discrete optimization problem [16]

Local Elimination Algorithms 9

Problem

subproblems

v

u1 u2 uk

Fig. 2. Underlying DAG of subproblems.

max
X

f(X) = max
X

∑

i∈K

fi(X
i),

where X = {x1, . . . , xn} is a set of discrete variables.

K = {1, 2, . . . , n− 1} ; X i = {xi, xi+1} .

In fig. 3 it is shown an interaction graph of the serial DO problem.

1
x

2
x

1n
x

n
x

Fig. 3. Interaction graph for the serial formulation of unconstrained DOP.

4.2 Discrete optimization problem with constraints

Consider the DOP (7), (5), (6) and suppose without loss of generality that
variables are eliminated in the order x1, . . . , xn. Using the local variable elim-
ination scheme eliminate the first variable x1. x1 is in a set of constraints with
the indices in U1:

U1 = {i | x1 ∈ Si}

10 Oleg Shcherbina

Together with x1, constraints in U1 contain variables from Nb(x1).
The following subproblem P1 corresponds to the variable x1 of the DOP:

hx1(Nb(x1)) = max
x1

{c1x1|AiSi
XSi

≤ bi, i ∈ U1, xj = 0, 1, xj ∈ Nb[x1]}

Then the initial DOP can be transformed in the following way:

max
x1,...,xn

{

∑

CNXN |AiSi
XSi

≤ bi, i ∈ M, xj = 0, 1, j ∈ N
}

=

max
x2,...,xn

{CN−{1}XN−{1}+hx1(Nb(x1)|AiSi
XSi

≤ bi, i ∈ M−U1, xj = 0, 1, j = 2, . . . , n}

The last problem has n − 1 variables; from the initial DOP were excluded
constraints with the indices in U1 and from the objective function the term
c1x1; there appeared a new objective function term hx1(Nb(x1)). Due to this
fact the interaction graph associated with the new problem is changed: a
vertex x1 is eliminated and its neighbors have become connected (due to the
appearance a new term hx1(Nb(x1)) in the objective). It can be noted that
a graph induced by vertices of Nb(x1) is complete, i.e. is a clique. Denote
the new interaction graph G1 and find all neighborhoods of variables in G1.
NSDP eliminates the remaining variables one by one in an analogous manner.
We have to store tables with optimal solutions at each stage of this process.
At the stage n of the described process we eliminate a variable xn and find
an optimal value of the objective function. Then a backward step of the local
elimination procedure is performed using the tables with solutions.

4.3 Elimination game, combinatorial elimination process, and
underlying DAG of the LAE computational procedure

Consider a sparse discrete optimization problem (1) — (3) whose structure is
described by an undirected interaction graph G = (X,E). Solve this problem
with a local elimination algorithm (LEA). LEA uses an ordering α of X [84]:
Given a graph G = (X,E) an ordering α of X is a bijection α : X ↔
{1, 2, . . . , n} where n = |X |.
Gα and Xα are correspondingly an ordered graph and an ordered vertex set.
Sometimes the ordering will be denoted as x1, . . . , xn, i.e. α(xi) = i and i will
be considered as an index of the vertex xi.

In Gα, a monotone neighborhood Nb
α

G(xi) ([18], [84]) of xi ∈ X is a
set of vertices monotonely adjacent to a vertex xi, i.e.

Nb
α

G(xi) = {xj ∈ NbG(xi)|j > i}.

The graph Gx [85] obtained from G = (X,E) by

(i) adding edges so that all vertices in NbG(x) are pairwise adjacent, and
(ii) deleting x and its incident edges

Local Elimination Algorithms 11

is the x–elimination graph of G. This process is called the elimination of
the vertex x.

Given an ordering x1, x2, . . . , xn, the LEA proceeds in the following way:
it subsequently eliminates x1, x2, . . . , xn in the current graph and computes
an associated local information about vertices from hxi

(Nb(xi)) [94]. This can
be described by the combinatorial elimination process [85]:

G0 = G,G1, . . . , Gj−1, Gj , . . . , Gn

where Gj is the xj–elimination graph of Gj−1 and Gn = ∅.
The process of interaction graph transformation corresponding to the

LEA scheme is known as Elimination Game which was first introduced
by Parter [80] as a graph analogy of Gaussian elimination. The input of the
elimination game is a graph G and an ordering α of G (i.e. α(x) = i if x is i-th
vertex in the ordering α). Elimination Game according to [53] consists in the
following. At each step i, the neighborhood of vertex xi is turned into a clique,
and xi is deleted from the graph. This is referred to as eliminating vertex xi.

We obtain a graph G
(i)
xi . The filled graph G+

α = (X, E+
α) is obtained by adding

to G all the edges added by the algorithm. The resulting filled graph G+
α is a

triangulation of G (FULKERSON & GROSS [44]), i.e., a chordal graph.
Let us introduce the notion for the elimination tree (etree) [67]. Given

a graph G = (X,E) and an ordering α, the elimination tree is a directed

tree
−→
T α that has the same vertices X as G and its edges are determined by a

parent relation defined as follows: the parent x is the first vertex (according
to the ordering α) of the monotone neighborhood Nb

α

G
+
α
(x) of x in the filled

graph G+
α .

Using the parent relation introduced above we can define a directed filled

graph
−→
G+

α .
The underlying DAG of a local variable elimination scheme can be constructed
using Elimination Game. At step i, we represent the computation of the func-
tion hxi

(NbGxi−1
(xi)) as a node of the DAG (corresponding to the vertex xi).

Then, this node containing variables (xi, Nb
(i−1)
Gxi−1

(xi)) is linked with a first

xj (accordingly to the ordering α) which is in Nb
G

(i−1)
xi−1

(xi).

It is easy to see that the elimination tree is the DAG of the computational
procedure of the LEA.

Example 2. Consider a DOP (P) with binary variables:

2x1 + 3x2 + x3 + 5x4 + 4x5 + 6x6 + x7 → max

3x1 + 4x2 + x3 ≤ 6, (C1)

2x2 + 3x3 + 3x4 ≤ 5, (C2)

2x2 + 3x5 ≤ 4, (C3)

2x3 + 3x6 + 2x7 ≤ 5, (C4)

xj = 0, 1, j = 1, . . . , 7.

12 Oleg Shcherbina

The interaction graph is shown in Fig. 4 (a). Elimination Game results and

graphs G
(i)
xi are in Fig. 5. Associated underlying DAG of NSDP procedure for

the variable ordering {x5, x2, x1, x4, x3, x6, x7} is shown in Fig. 4 (b).

(a) (b)

1x 3x 6x

2x

4x 7x

5x
5x

2x

1x
3x

6x

7x
4x

)x(h 25

)x,x,x(h 4312

)x,x(h 431)x,x(h 763

)x(h 34

)x(h 76

7h

Fig. 4. Elimination tree of the DOP (a) Computing the information while elimi-
nating variables in the LEA computational procedure (b) (example 2).

4.4 Bucket elimination

Bucket elimination (BE) is proposed in [32] as a version of NSDP for solving
CSPs. Now, we consider a modification of the BE algorithm for solving DOPs.
The BE algorithm works as follows: Assume we are given an order x1, . . . , xn

of the variables of the DOP. BE starts by creating n ”buckets”, one for each
variable xj . BE algorithm uses as input ordered set of variables and a set
of constraints. To each variable xj is corresponded a bucket Σ(xj), i.e., a set
of constraints and components of objective function built as follows: In the
bucket Σ(xj) of variable xj we put all constraints that contain xj but do
not contain any variable having a higher index. We now iterate on j from
n to 1, eliminating one bucket at a time. Algorithm finds new components
of the objective applying so called ”elimination operator” (in our case the
latter consists on solving associated DO subproblems) to all constraints and
components of the objective function of the bucket under consideration. New
components of the objective function reflecting an impact of variable xj on
the rest part of the DO problem, are located in corresponding lower buckets.
Consider an application of BE to solving the DOP with constraints from
Example 2. We use an elimination ordering α : {x5, x2, (x1, x4), x3, (x6, x7)}.
Variables (x1, x4) shall be eliminated in block since they are indistinguishable.
Build buckets (subsets of constraints) beginning from last (due order α) block
(x6, x7). A bucket Σ(x6,x7) includes all constraints of the DOP containing the
variables x6, x7, i.e., the bucket Σ(x6,x7) consists of constraint C4: Σ

(x6,x7) =
{C4}. Similarly: Σ(x3) = {C1, C2}, Σ(x1,x4) = ∅, Σ(x2) = {C3}, Σ(x5) = ∅.

Local Elimination Algorithms 13

c) after elimination 2x ; d) after elimination 1x ;

f) after elimination 3x .

) Initial interaction

graph;

1x 3x 6x

2x

4x 7x

5x

b) after elimination 5x ;

1x 3x 6x

2x

4x 7x

1x 3x 6x

4x 7x

6x

7x

1x 3x 6x

2x

4x 7x

5x

h) Filled graph G .

G)(1

5x
G

)(2

2x
G

)(5

3x
G

)(3

1x
G

3x 6x

4x 7x

3x 6x

7x

e) after elimination 4x ;

)(4

4x
G

7x
)(6

6x
G

g) after elimination 6x .
1x 3x 6x

2x

4x 7x

5x

i) Directed filled graph G .

Fig. 5. Elimination Game. Fill-in is represented by dashed lines

We solve a DO subproblem associated with the bucket Σ(x6,x7):
For each binary assignment x3, we compute values x6, x7 such that

hx6,x7(x3) = max
x6,x7

{6x6 + x7 | 2x3 + 3x6 + 2x7 ≤ 5, xj ∈ {0, 1}}.

14 Oleg Shcherbina

Table 1.
Calculation of hx6,x7(x3)

x3 hx6,x7 x∗
6 x∗

7

0 7 1 1
1 6 1 0

Table 2.
Calculation of hx3(x1, x2, x4)

x1 x2 x4 hx3 x∗
3

0 0 0 7 1
0 0 1 7 0
0 1 0 7 1
0 1 1 7 0
1 0 0 7 1
1 0 1 7 0
1 1 0 - -
1 1 1 - -

The function hx6,x7(x3) is placed in the bucket Σ(x3). Consider the DO sub-
problem associated with this bucket

hx3(x1, x2, x4) = max
x3

[x3 + hx6,x7(x3)]

3x1 + 4x2 + x3 ≤ 6,

2x2 + 3x3 + 3x4 ≤ 5,

xj = 0, 1, j = 1, 2, 3, 4.

We place the function hx3(x1, x2, x4) in the bucket Σ(x1,x4) and solve the
problem

hx1,x4(x2) = max
x1,x4

{2x1 + 5x4 + hx3(x1, x2, x4) | xj ∈ {0, 1}}.

Build the corresponding table 3.
Function hx1,x4(x2) is placed in the bucket Σ(x2). A new DO subproblem

left to be solved

hx2(x5) = max
x2

{3x2 + hx1,x4(x2) | 2x2 + 3x5 ≤ 4, xj ∈ {0, 1}}

Table 3.
Calculation of hx1,x4(x2)

x2 hx1,x4 x∗
1 x∗

4

0 14 1 1
1 12 0 1

Table 4.
Calculation of hx2(x5)

x5 hx2 x∗
2

0 15 1
1 14 0

Place hx2(x5) in the last bucket Σ(x5). The new subproblem is:

hx5 = max
x5

{4x5 + hx2(x5) | xj ∈ {0, 1}},

its solution is h5 = 18, x∗
5 = 1 and the maximal objective value is 18.

Local Elimination Algorithms 15

To find the optimal values of the variables, it is necessary to do backward
step of the BE procedure: from the last table 4 using x5 = 1 we have x∗

2 = 0.
Considering the table 3 we have for x2 = 0 : x∗

1 = 1, x∗
4 = 1. From the table

2: x1 = 1, x2 = 0, x4 = 1 ⇒ x∗
3 = 0. Table 1: x3 = 0 ⇒ x∗

6 = 1, x∗
7 = 1.

The solution is (1, 0, 0, 1, 1, 1, 1), optimal objective value is 18.

5 Block local elimination scheme

5.1 Partitions, clustering, and quotient graphs

The local elimination procedure can be applied to elimination of not only
separate variables but also to sets of variables and can use the so called ”elim-
ination of variables in blocks” ([16], [90]), which allows to eliminate several
variables in block. Local decomposition algorithm [90] actually implements
the local block elimination algorithm. If the DOP is divided into blocks cor-
responding to subsets of variables (meta-variables), then block structure can
be described with the aid of a structural condensed graph whose meta-nodes
correspond to subsets of the variables or blocks and meta-edges correspond
to adjacent blocks.

Applying the method of merging variables into meta-variables allows to
obtain condensed or meta-DOPs which have a simpler structure. If the re-
sulting meta-DOP has a nice structure (e.g., a tree structure) then it can be
solved efficiently.

The structural graph of the meta-DOP is obtained by collapsing merged
nodes into a single meta-node and connecting the meta-node with all nodes
that were adjacent with some of the merged nodes. Such a graph usually is
called a quotient graph.
An ordered partition of a setX is a decomposition ofX into ordered sequence
of pairwise disjoint nonempty subsets whose union is all of X .
Partitioning is a fundamental operation on graphs. One variant of it is to
partition the vertex set X to three sets X = U ∪ S ∪ W , such that U and
W are balanced, meaning that neither of them is too small, and S is small.
Removing S along with all edges incident on it separates the graph into two
connected components. S is called a separator. In general, graph partitioning
is NP -hard. Since graph partitioning is difficult in general, there is a need for
approximation algorithms. A popular algorithm in this respect is MeTiS [70],
which has a good implementation available in the public domain.

Taking advantage of indistinguishable variables (two variables are indis-
tinguishable if they have the same closed neighborhood [1], [7], [54], [8]) it is
possible to compute a quotient (condensed) graph which is formed by
merging all vertices with the same neighborhoods into a single meta-node.
Let x be a block of a graph G [5], i.e., a maximal set of indistinguishable
with v vertices. Clearly, the blocks of G partition X since indistinguishability
is an equivalence relation defined on the original vertices.

16 Oleg Shcherbina

An equivalence relation on a set induces a partition on it, and also any
partition induces an equivalence relation. Given a graph Γ = (X,E), let
X be a partition on the vertex set X :

X = {x1,x2, . . . ,xm}.

That is, ∪m
i=1xi = X and xi ∩ xk = ∅ for i 6= k. We define the quotient

graph of G with respect to the partition X to be the graph

G/X = (X, E),

where (xi, xk) ∈ E if and only if NbG(xi) ∩ xk 6= ∅.
The quotient graph G(X, E) is an equivalent representation of the inter-

action graph G(X,E), where X is a set of blocks (or indistinguishable sets
of vertices), and E ⊆ X × X be the edges defined on X. A local block
elimination scheme is one in which the vertices of each block are eliminated
contiguously [5]. As an application of a clustering technique we consider be-
low a block local elimination procedure [16] where the elimination of the block
(i.e., a subset of variables) can be seen as the merging of its variables into a
meta-variable.

The merges done define a so called synthesis tree [102] on the variables.

Definition 4. A synthesis tree of an initial DOP P is a tree whose leaves
correspond to the variables of the initial DOP P , and where each intermediate
node is a meta-variable corresponding to the combination of its children nodes.

Using the synthesis tree it is possible to ”decode” meta-variables and find the
solution of the initial DOP.

Consider an ordered partition X of the set X of the variables into blocks:

X = (x1, . . . ,xp), p ≤ n,

where xl = XKl
(Kl is a set of indices corresponding to xl, l = 1, . . . , p). For

this ordered partition X, the DOP P: (7), (5), (6) can be solved by the LEA
using quotient interaction graph G.

A. Forward part
Consider first the block x1. Then

max
X

{CNXN |AiSi
XSi

≤ bi, i ∈ M, xj = 0, 1, j ∈ N} =

max
XK2 ,...,XKp

{CN−K1XN−K1 + h1(Nb(XK1)|AiSi
XSi

≤ bi, i ∈ M − U1,

xj = 0, 1, j ∈ N −K1}

where U1 = {i : Si ∩K1 6= ∅} and

h1(Nb(XK1)) = max
XK1

{CK1XK1 |AiSi
XSi

≤ bi, i ∈ U1, xj = 0, 1, xj ∈ Nb[x1]}.

Local Elimination Algorithms 17

The first step of the local block elimination procedure consists of solving,
using complete enumeration of XK1 , the following optimization problem

h1(Nb(XK1)) = max
XK1

{CK1XK1 |AiSi
XSi

≤ bi, i ∈ U1, xj = 0, 1, xj ∈ Nb[x1]},

(8)
and storing the optimal local solutions XK1 as a function of the neighborhood
ofXK1 , i.e., X

∗
K1

(Nb(XK1)).
The maximization of f(X) over all feasible assignments Nb(XK1), is called

the elimination of the block (or meta-variable) XK1 . The optimization
problem left after the elimination of XK1 is:

max
X−XK1

{CN−K1XN−K1 + h1(Nb(XK1))|AiSi
XSi

≤ bi, i ∈ M − U1,

xj = 0, 1, j ∈ N −K1}.

Note that it has the same form as the original problem, and the tabular
function h1(Nb(XK1)) may be considered as a new component of the modified
objective function. Subsequently, the same procedure may be applied to the
elimination of the blocks – meta-variables x2 = XK2 , . . . ,xp = XKp

, in turn.
At each step j the new component hxj

and optimal local solutions X∗
Kj

are

stored as functions of Nb(XKj
| XK1 , . . . , XKj−1), i.e., the set of variables

interacting with at least one variable of XKj
in the current problem, obtained

from the original problem by the elimination of XK1 , . . . , XKj−1 . Since the
set Nb(XKp

| XK1 , . . . , XKp−1) is empty, the elimination of XKp
yields the

optimal value of objective f(X).
B. Backward part.
This part of the procedure consists of the consecutive choice of X∗

Kp
,

X∗
Kp−1

, . . . , X∗
K1

, i.e., the optimal local solutions from the stored tables

X∗
K1

(Nb(XK1)), X
∗
K2

(Nb(XK2 | XK1)), . . . , X
∗
Kp

| XKp−1 , . . . , XK1 .
Block elimination game and underlying DAG
It is possible to extend EG to the case of the block elimination. The

input of extended EG is an initial interaction graph G and a partition
X = {x1, . . . ,xp} of vertices of G. At each step ν (1 ≤ ν ≤ p) of EG, the
neighborhood Nb(xν) of xν is turned into a clique, and xν is deleted from the
graph G. The filled graph G+

X = (X,E+) is obtained by adding to G all the
edges added by the algorithm. The resulting filled graph G+

X is a triangulation
of G, i.e., a chordal graph [6].

Underlying DAG of the local block elimination procedure contains nodes
corresponding to computing of functions hxi

(Nb
G

(i−1)
X

(xi)) and is a general-

ized elimination tree.

Example 3. Local block elimination for unconstrained DOP.
Consider an unconstrained DOP

max
X

[f1(x1, x2, x3) + f2(x2, x3, x4) + f3(x2, x5) + f4(x3, x6, x7)],

18 Oleg Shcherbina

where
X = (x1, x2, x3, x4, x5, x6, x7)

and functions f1, f2, f3, f4 are given in the following tables.

Table 5. f1

x1 x2 x3 f1

0 0 0 2
0 0 1 3
0 1 0 4
0 1 1 0
1 0 0 5
1 0 1 2
1 1 0 4
1 1 1 1

Table 6. f2

x1 x2 x3 f2

0 0 0 3
0 0 1 1
0 1 0 5
0 1 1 2
1 0 0 4
1 0 1 1
1 1 0 3
1 1 1 0

Table 7. f3

x2 x5 f3

0 0 6
0 1 2
1 0 4
1 1 5

Table 8. f4

x3 x6 x7 f4

0 0 0 5
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 2
1 0 1 1
1 1 0 3
1 1 1 6

Consider an ordered partition of the variables of the set into blocks:

x1 = {x5}, x2 = {x1, x2, x4}, x3 = {x6, x7}, x4 = {x3}.

Interaction graph for this problem is the same as in Fig. 4 (a).
For the ordered partition X = {x1, x2, x3, x4}, this unconstrained DO

problem may be solved by the LEA. Initial interaction graph with partition
presented by dashed lines is shown in Fig. 6 (a), quotient interaction graph
is in Fig. 6 (b), and the DAG of the block local elimination computational
procedure is shown in Fig. 7.

A. Forward part
Consider first the block x1 = {x5}. Then Nb(x1) = {x2}. Solve using

complete enumeration the following optimization problem

hx1
(Nb(x1)) = max

x5

f3(x2, x5),

Local Elimination Algorithms 19

b

},{= 763 xxx

x2

a

1x 3x 6x

2x

4x 7x

5x

x3
x4

x1

}{= 34 xx

},,{= 4212 xxxx

}{= 51 xx

Fig. 6. Interaction graph of the DOP with partition (dashed) (a) and quotient
interaction graph (b) (example 3).

},{= 76 xx3x

}{= 3x4x

},,{= 421 xxx2x

}{= 5x1x

)(
3
x 3xh

)(
1
x 2xh

)(xh 3
2
x

4
xh

Fig. 7. The DAG (generalized elimination tree) of the local block elimination com-
putational procedure for the DO problem (example 3).

and store the optimal local solutions x1 as a function of a neighborhood, i.e.,
x1

∗(Nb(x1)).
Eliminate the block x1 and consider the block x2 = {x1, x2, x4}. Nb(x2) =

{x3}. Now the problem to be solved is

hx2
(x3) = max

x1,x2,x4

{hx1
(x2) + f1(x1, x2, x3) + f2(x2, x3, x4)}.

Build the corresponding table 10.

Table 9.
Calculation of hx1

(x2)

x2 hx1
(x2) x

∗
5

0 6 0
1 5 1

Table 10.
Calculation of hx2

(x3)

x3 hx2
(x3) x

∗
1 x∗

2 x∗
4

0 14 1 0 0
1 14 0 0 0

20 Oleg Shcherbina

Eliminate the block x2 and consider the block x3 = {x6, x7}. The neighbor
of x3 is x3: Nb(x3) = {x3}. Solve the DOP containing x3:

hx3
(x3) = max

x6,x7

{f4(x3, x6, x7), xj ∈ {0, 1}}

and build the table 11.

Table 11.
Calculation of hx3

(x3)

x3 hx3
(x3) x

∗
6 x∗

7

0 5 0 0
1 6 0 1

Eliminate the block x3 and consider the block x4 = {x3}. Nb(x4) = ∅. Solve
the DOP:

hx4
= max

x3

{hx2
(x3) + hx3

(x3), xj ∈ {0, 1}} = 20,

where x∗
3 = 1.

B. Backward part.
Consecutively find x3

∗,x2
∗,x1

∗, i.e., the optimal local solutions from the
stored tables 11, 10, 9:
x∗
3 = 1 ⇒ x∗

6 = 1, x∗
7 = 1 (table 11);

x∗
3 = 1 ⇒ x∗

1 = 0, x∗
2 = 0, x∗

4 = 0 (table 10); x∗
2 = 0 ⇒ x∗

5 = 0 (table 9).
We found the optimal solution to be (0, 0, 1, 0, 0, 1, 1), the maximum
objective value is 20.

Example 4. Local block elimination for constrained DOP
Consider the DOP from example 2 and an ordered partition of the variables

of the set into blocks:

x1 = {x5}, x2 = {x1, x2, x4}, x3 = {x6, x7}, x4 = {x3}.

For the ordered partition {x1, x2, x3, x4}, this constrained optimization
problem may be solved by the LEA.

A. Forward part
Consider first the block x1 = {x5}. Then Nb(x1) = {x2}. Solve the fol-

lowing problem containing x5 in the objective and the constraints:

hx1
(Nb(x1)) = max

x5

{4x5 | 2x2 + 3x5 ≤ 4, xj ∈ {0, 1}}

and store the optimal local solutions x1 as a function of a neighborhood,
i.e., x1

∗(Nb(x1)). Eliminate the block x1. and consider the block x2 =
{x1, x2, x4}. Nb(x2) = {x3}. Now the problem to be solved is

Local Elimination Algorithms 21

hx2
(x3) = max

x1,x2,x4

{hx1
(x2) + 2x1 + 3x2 + 5x4}

subject to

3x1 + 4x2 + x3 ≤ 6,

2x2 + 3x3 + 3x4 ≤ 5,

xj = 0, 1, j = 1, 2, 3, 4.

Build the corresponding table 13.

Table 12.
Calculation of hx1

(x2)

x2 hx1
(x2) x

∗
5

0 4 1
1 0 0

Table 13.
Calculation of hx2

(x3)

x3 hx2
(x3) x

∗
1 x∗

2 x∗
4

0 11 1 0 1
1 6 1 0 0

Eliminate the block x2 and consider the block x3 = {x6, x7}. The neighbor
of x3 is x3: Nb(x3) = {x3}. Solve the DOP containing x3:
hx3

(x3) = maxx6,x7{hx2
+ x3 + 6x6 + x7 | 2x3 + 3x6 + 2x7 ≤ 5, xj ∈ {0, 1}}

and build the table 14.

Table 14.
Calculation of hx3

(x3)

x3 hx3
(x3) x

∗
6 x∗

7

0 18 1 1
1 12 1 0

Eliminate the block x3 and consider the block x4 = {x3}. Nb(x4) = ∅. Solve
the DOP:

hx4
= max

x3

{hx3
(x3), xj ∈ {0, 1}} = 18,

where x∗
3 = 0.

B. Backward part.
Consecutively find x3

∗,x2
∗,x1

∗, i.e., the optimal local solutions from the
stored tables 14, 13, 12. x∗

3 = 0 ⇒ x∗
6 = 1, x∗

7 = 1 (table 14); x∗
3 = 0 ⇒ x∗

1 =
1, x∗

2 = 0, x∗
4 = 1 (table 13); x∗

2 = 0 ⇒ x∗
5 = 1 (table 12). We found the

optimal global solution to be (1, 0, 0, 1, 1, 1, 1), the maximum objective
value is 18.

6 Tree structural decompositions in discrete

optimization

Tree structural decomposition methods use partitioning of constraints and use
as a meta-tree a structural graph . Dynamic programming algorithm starts
at the leaves of the meta-tree and proceeds from the smaller to the larger
subproblems (corresponding to the subtrees) that is to say, bottom-up in the
rooted tree.

22 Oleg Shcherbina

6.1 Tree decomposition and methods of its computing

Aforementioned facts and an observation that many optimization problems
which are hard to solve on general graphs are easy on trees make detection
of tree structures in a graph a very promising solution. It can be done with
such powerful tool of the algorithmic graph theory as a tree decomposition
and the treewidth as a measure for the ”tree-likeness” of the graph [83]. It
is worth noting that in [56] is discussed a number of other useful parameters
like branch-width, rank-width (clique-width) or hypertree-width.

Definition 5. Let G = (X,E) be a graph. A tree decomposition of G is a
pair (T ;Y) with T = (I;F) a tree and Y = {yi | I ∈ I} a family of subsets
of X, one for each node of T , such that

• (i)
⋃

i∈I yi = X,
• (ii) for every edge (x, y) ∈ X there is an i ∈ I with x ∈ yi, y ∈ yi,
• (iii) (intersection property) for all i, j, l ∈ I, if i < j < l, then yi∩yl ⊆ yj.

Note that tree decomposition uses partition of constraints, i.e., it can be con-
sidered as a dual structural decomposition method. The best known complex-
ity bounds are given by the ”treewidth” tw (Robertson, Seymour [83])
of an interaction graph associated with a DOP. This parameter is related to
some topological properties of the interaction graph. Tree decomposition and
the treewidth (Robertson, Seymour [83]) play a very important role in
algorithms, for many NP -complete problems on graphs that are otherwise
intractable become polynomial time solvable when these graphs have a tree
decomposition with restricted maximal size of cliques (or have a bounded
treewidth [6], [20], [21]). It leads to a time complexity in O(n · 2tw+1). Tree
decomposition methods aim to merge variables such that the meta-graph is a
tree of meta-vertices.

The procedure to solve a DO problem with bounded treewidth involves two
steps: (1) computation of a good tree decomposition, and (2) application of a
dynamic programming algorithm that solves instances of bounded treewidth
in polynomial time.

Thus, a tree decomposition algorithm can be applied to solving DOPs
using the following steps:

(i) generate the interaction graph for a DOP (P);
(ii) using an ordering for Elimination Game add edges in the interaction graph

to produce a (chordal) filled graph;
(iii) build the elimination tree and information flows (see Fig 4(b));
(iv) identify the maximum cliques, apply an absorption and build subproblems;
(v) produce a tree decomposition;
(vi) solve the DO subproblems for each meta-node and combine the results

using LEA.

As finding an optimal tree decomposition is NP -hard, approximate optimal
tree decompositions using triangulation of a given graph are often exploited.

Local Elimination Algorithms 23

Let us list existing methods of computing tree decomposition using a survey of
them in [61]. Optimal triangulations algorithms have an exponential time
complexity. Unfortunately, their implementations do not have much interest
from a practical viewpoint. For example, the algorithm described in [41] has
time complexity O(n4 · (1.9601n)) [61]. A paper [46] has shown that the algo-
rithm proposed in [96] cannot solve small graphs (50 vertices and 100 edges).
The approach of [46] using a branch and bound algorithm, seems promising
for computing optimal triangulations. Approximation algorithms approx-
imate the optimum by a constant factor. Although their complexity is often
polynomial in the treewidth [2], this approach seems unusable due to a big
hidden constant. Minimal triangulation computes a set C

′

such that, for
every subset C

′′

⊂ C
′

, the graph G
′

= (X,C ∪ C
′′

) is not triangulated. The
algorithms LEX-M [84] and LB [17] have a polynomial time complexity of
O(ne

′

) with e
′

the number of edges in the triangulated graph. Heuristic tri-
angulation methods build a perfect elimination order by adding some edges
to the initial graph. They can be easily implemented and often do this work
in polynomial time without providing any minimality warranty. In practice,
these heuristics compute triangulations reasonably close to the optimum [64].
Experimental comparative study of four triangulation algorithms, LEX-M,
LB, min-fill and MCS was done in [61]. Min-fill orders the vertices from 1
to n by choosing the vertex which leads to add a minimum number of edges
when completing the subgraph induced by its unnumbered neighbors. Paper
[61] claims that LB and min-fill obtain the best results.

6.2 Computing tree decompositions for NSDP schemes

Given a triangulated (or chordal) graph, the set of its maximal cliques cor-
responds to the family of subsets associated with a tree decomposition (so
called clique tree [18]). When we exploit tree decomposition, we only con-
sider approximations of optimal triangulations by clique trees. Hence, the time
complexity is then O(n · 2w

++1) (w+1 ≤ w+ +1 ≤ n). The space complexity
is O(n · s · 2s) with s the size of the largest minimal separator [61].
Usually, tree decomposition is considered in the literature separately from
NSDP issues. But there is a close connection between these two structural de-
composition approaches. Moreover, it is easy to see that a tree decomposition
can be obtained from the DAG of the computational NSDP procedure (this
fact was noted in [63]).

Consider example 2 and build a tree decomposition associated with the
corresponding NSDP procedure. Associated underlying DAG of NSDP proce-
dure for the variable ordering {x5, x2, x1, x4, x3, x6, x7} is shown in Fig. 4 (b).
As was mentioned above, this underlying DAG of local variable elimination
(the elimination tree) is constructed using Elimination Game. A node i of

the DAG is containing variables (αi, Nb
(i−1)
Gxi−1

(xi)) is linked with the first xj

(accordingly to the ordering α) which is in Nb
G

(i−1)
xi−1

(xi). Nodes and edges of

24 Oleg Shcherbina

desired tree decomposition correspond one-by-one to nodes and edges of the
underlying DAG. Each node of the tree decomposition is indeed a meta-node
containing a subset of vertices of the interaction graph G. This subset induces
a subgraph in G that was condensed to generate the meta-node. Restore these
subgraphs for each meta-node of the tree decomposition.

Proposition 1. Graph structure obtained by this construction from the un-
derlying DAG of the NSDP procedure is a tree decomposition.

Proof is in [63].
In our example 2, we observe that the first (accordingly to ordering α) meta-
node corresponds to the variable x5 and contains variables (vertices) x2, x5

(i.e., x5∪Nb(x5)). Subgraph induced by these vertices can be constructed us-
ing the interaction graph G (Fig. 4 a). This subgraph is shown in Fig. 8 (a) —
the meta-node y1. Next meta-node y2 of the tree decomposition corresponds
to the variable x2 and contains variables x1, x2, x3, x4. The corresponding
induced subgraph (clique) is shown inside the meta-node y2 in Fig. 9 (a).
Continuing in analogous way we obtain the tree decomposition as shown in
Fig. 8 (a).
It is easy to see that some cliques in this tree decomposition are not maximal
and can be absorbed by other cliques. In the case, when one clique contains
another clique, the second clique can be absorbed into the first one. Thus, the
clique corresponding to the meta-node y2 is absorbed by clique y3 (we denote
a result of absorption as a clique y2,3. The clique y5 is absorbed by clique
y4 forming a clique y4,5. After absorptions done we obtain a clique tree (Fig.
8 (b)) containing only maximal cliques. These maximal cliques correspond
to constraints of the DOP. In Fig. 8 (b) maximal cliques and links between
them are shown. Local decomposition algorithm [90] that uses a dynamic pro-
gramming paradigm can be applied to this clique tree. Other possible way of
finding the clique tree is using maximal spanning tree in the dual graph.

6.3 Applying the local decomposition algorithm to solving DO
problem

To describe how tree decompositions are used to solve problems with the
local decomposition algorithm, let us assume we find a tree decomposition of
a graph G. Since this tree decomposition is represented as a rooted tree T , the
ancestor/descendant relation is well-defined. We can associate to each meta-
node y the subgraph of Gmade up by the vertices in y and all its descendants,
and all the edges between those vertices. Starting at the leaves of the tree T ,
one computes information typically stored in a table, in a bottom-up manner
for each bag until we reach the root. This information is sufficient to solve the
subproblem for the corresponding subgraph. To compute the table for a node
of the tree decomposition, we only need the information stored in the tables
of the children (i.e. direct descendants) of this node. The DO problem for the

Local Elimination Algorithms 25

entire graph can then be solved with the information stored in the table of
the root of T . Consider example 2 and exploit the tree decomposition (clique
tree) shown in Fig. 8 (b). Let us solve the subproblem corresponding to the
block y1. Since this block is adjacent to the block y2,3, we have to solve a
DOP with variables y1 − y2,3 for all possible assignments y1

⋂

y2,3. Thus,
since y1 − y2,3 = {x5} and y1

⋂

y2,3 = {x2}, then induced subproblem has
the form:

hy1
(x2) = max

x5

{4x5}

subject to
2x2 + 3x5 ≤ 4, xj = 0, 1, j ∈ {2, 5}

Solution of the problem can be written in a tabular form (see table 15).

Table 15.
Calculation of hy1

(x2)

x2 hy1
x∗
5(x2)

0 4 1
1 0 0

Table 16.
Calculation of hy2,3

(x3)

x3 hy2,3
x∗
1(x3) x

∗
2(x3) x

∗
4(x3)

0 11 1 0 1
1 6 1 0 0

Since y2,3−y4 = {x1, x2, x3, x4}−{x3, x6, x7} = {x1, x2, x4} and y2,3

⋂

y4 =
{x3}, next subproblem corresponding to the leaf (or meta-node) y2,3 of the
clique tree is

26 Oleg Shcherbina

2x

5x

4y5y

1y
2y

7x

6x

3y

3,2y

5,4y

3x

6x

7x

1x
3x

4x

1x
3x

4x2x

Forming a maximal

clique by absorption

Forming a maximal

clique by absorption

(a)

2
x

5
x

1
y 3,2

y

5,4
y

3
x

6
x

7
x

1
x 3

x

4
x

2
x

(b)
Fig. 8. Tree decomposition for the NSDP procedure (example 2) before (a)

and after absorption (b).

Local Elimination Algorithms 27

hy2,3
(x3) = max

x1,x2,x4

{hy1
+ 2x1 + 3x2 + 5x4}

subject to

3x1 + 4x2 + x3 ≤ 6, 2x2 + 3x3 + 3x4 ≤ 5, xj = 0, 1, j ∈ {1, 2, 3, 4}

Solution of this subproblem is in table 16. The last problem corresponding to
the block y4,5 left to be solved is:

hy4,5
= max

x3,x6,x7

{

hy2,3
(x3) + x3 + 6x6 + x7

}

s.t.
2x3 + 3x6 + 2x7 ≤ 5, xj = 0, 1, j ∈ {3, 6, 7}

Table 17. Calculation of hy4,5

hy4,5
x∗
3 x∗

6 x∗
7

18 0 1 1

The maximal objective value is 18. To find the optimal values of the variables,
it is necessary to do a backward step of the dynamic programming procedure:
from table 17 we have x∗

3 = 0, x∗
6 = 1, x∗

7 = 1. From the table 16 using the
information x∗

3 = 0 we find x∗
1 = 1, x∗

2 = 0, x∗
4 = 1. Considering table 15

we have for x∗
2=0: x∗

5 = 1. The solution is (1, 0, 0, 1, 1, 1, 1); the maximal
objective value is 18.

7 Conclusion

This paper reviews the main graph-based local elimination algorithms for
solving DO problems. The main aim of this paper is to unify and clarify the
notation and algorithms of various structural DO decomposition approaches.
We hope that this will allow us to apply the aforementioned decomposition
techniques to develop competitive algorithms which will be able to solve prac-
tical real-life discrete optimization problems.

References

1. Amestoy PR, Davis TA, Duff IS (1996) An approximate minimum degree or-
dering algorithm. SIAM J on Matrix Analysis and Applications 17:886–905

2. Amir E (2001) Efficient approximation for triangulation of minimum treewidth.
In: Proceedings of UAI

3. Aris R (1961) The optimal design of chemical reactors. Academic Press, New
York

4. Arnborg S (1985) Efficient algorithms for combinatorial problems on graphs
with bounded decomposability — A survey. BIT 25:2-23

28 Oleg Shcherbina

5. Arnborg S, Corneil DG, Proskurowski A (1987) Complexity of finding embed-
dings in a k-tree. SIAM J Alg Disc Meth 8(2):277–284

6. Arnborg S, Lagergren J, Seese D (1991) Easy problems for tree-decomposable
graphs. J of Algorithms 12:308–340

7. Ashcraft C (1995) Compressed graphs and the minimum degree algorithm.
SIAM J Sci Comput 16(6):1404–1411

8. Ashcraft C, Liu JWH (1995) Robust ordering of sparse matrices using multi-
section. SIAM J Matrix Anal Appl 19(3):816–832

9. Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998)
Branch and price: Column generation for solving huge integer programs. Oper-
ations Research 46:316–329

10. Beeri C, Fagin R, Maier D, Yannakakis M (1983) On the desirability of acyclic
database schemes. Journal ACM 30:479-513

11. Beightler CS, Johnson DB (1965) Superposition in branching allocation prob-
lems. Journal of Mathematical Analysis and Applications 12:65–70

12. Bellman R, Dreyfus S (1962) Applied Dynamic Programming. Princeton Uni-
versity Press, Princeton

13. Benders JF (1962) Partitioning procedures for solving mixed-variables program-
ming problems. Numerische Mathematik 4:238–252

14. Bertele U, Brioschi F (1969) A new algorithm for the solution of the secondary
optimization problem in nonserial dynamic programming. Journal of Mathe-
matical Analysis and Applications 27:565–574

15. Bertele U, Brioschi F (1969) Contribution to nonserial dynamic programming.
Journal of Mathematical Analysis and Applications 28:313–325

16. Bertele U, Brioschi F (1972) Nonserial Dynamic Programming. Academic Press,
New York

17. Berry A (1999) A wide-range efficient algorithm for minimal triangulation. In:
Proceedings of SODA.

18. Blair JRS, Peyton B (1993) An introduction to chordal graphs and clique trees.
In: Graph theory and sparse matrix computation. Springer, New York

19. Bodlaender HL(ed)(2003) Graph-theoretic concepts in computer science. 29th
international workshop, WG 2003, Elspeet, The Netherlands, June 19–21, 2003.
Lecture Notes in Computer Science 2880. Springer, Berlin

20. Bodlaender HL (1997) Treewidth: Algorithmic techniques and results. In: Pri-
vara L et al.(eds) Mathematical foundations of computer science. 22nd inter-
national symposium, MFCS ’97, Bratislava, Slovakia, August 25-29, 1997. Pro-
ceedings. Lect. Notes Comput Sci 1295. Springer, Berlin

21. Bodlaender H, Koster AMCA (2008) Combinatorial optimization on graphs of
bounded treewidth, Computer Journal 51:255–269

22. Burkard RE, Hamacher HW, Tind J (1985) On General Decomposition
Schemes in Mathematical Programming. Mathematical Programming Studies
24: ”Festschrift on the occasion of the 70 th birthday of George B. Dantzig”,
238–252

23. Cook SA (1971) The complexity of theorem-proving procedures. In: Proc 3rd
Ann ACM Symp on Theory of Computing Machinery. New York.

24. Cook W, Seymour PD (2003) Tour merging via branch-decomposition. IN-
FORMS Journal on Computing 15:233–248

25. Courcelle B (1990) The monadic second-order logic of graphs I: Recognizable
sets of finite graphs. Information and Computation 85:12–75

Local Elimination Algorithms 29

26. Crama Y, Hansen P, Jaumard B (1990) The basic algorithm for pseudo-boolean
programming revisited, Discrete Applied Mathematics 29:171–185

27. Dantzig GB (1949) Programming of interdependent activities II: Mathematical
model. Econometrica 17:200–211

28. Dantzig GB (1981) Time-staged methods in linear programming. Comments
and early history. In: Dantzig GB et al. (eds), Large-Scale Linear Programming,
IIASA, Laxenburg, Austria, 3–16

29. Dantzig GB (1973) Solving staircase linear programs by a nested block-angular
method. Technical Report 73-1. Stanford Univ., Dept. of Operations Research,
Stanford

30. Dasgupta S, Papadimitriou CH, Vazirani UV (2006) Algorithms. McGraw Hill
31. Dechter R (1992) Constraint networks. In: Encyclopedia of Artificial Intelli-

gence, 2nd edn. Wiley, New York
32. Dechter R (1999) Bucket elimination: A unifying framework for reasoning. Ar-

tificial Intelligence 113:41–85
33. Dechter R, El Fattah Y (2001) Topological parameters for time-space tradeoff.

Artificial Intelligence 125:93–118
34. Dechter R (2003) Constraint processing. Morgan Kaufmann, 2003
35. Dechter R, Pearl J (1989) Tree clustering for constraint networks. Artificial

Intelligence 38:353–366
36. Dolgui A, Soldek J, Zaikin O (eds) (2005) Supply chain optimisation: prod-

uct/process design, facilities location and flow control. Series: Applied Opti-
mization, XVI. Springer, V. 94

37. Esogbue AO, Marks B (l974) Non-serial dynamic programming – A survey.
Operational Research Quarterly 25:253–265

38. Fernandez-Baca D (1988) Nonserial dynamic programming formulations of sat-
isfiability. Information Processing Letters 27:323–326

39. Finkel’shtein YuYu (1965) On solving discrete programming problems of special
form (Russian). Economics and Mathematical Methods 1:262–270

40. Floudas CA (1995) Nonlinear and mixed-integer optimization: fundamentals
and applications. Oxford University Press, Oxford

41. Fomin F, Kratsch D, Todinca I (2004) Exact (exponential) algorithms for
treewidth and minimum fill-in. In: Proceedings of ICALP

42. Fourer R (1984). Staircase matrices and systems. SIAM Review 26(1):1–70
43. Freuder E (1992) Constraint solving techniques. In: Tyngu E, Mayoh B, Penjaen

J (eds) Constraint Programming of series F: Computer and System Sciences,
51–74. NATO ASI Series

44. Fulkerson DR, Gross OA (1965) Incidence matrices and interval graphs. Pacific
J of Mathematics 15:835–855

45. George JA, Liu JWH (1981) Computer Solution of Large Sparse Positive Def-
inite Systems. Prentice-Hall Inc., Englewood Cliffs

46. Gogate V, Dechter R (2004) A complete anytime algorithm for treewidth. In:
Proceedings of UAI

47. Gottlob G, Leone N, Scarcello F (2000) A comparison of structural CSP de-
composition methods. Artificial Intelligence 124:243–282

48. Gottlob G, Szeider S (2008) Fixed-parameter algorithms for artificial intelli-
gence, constraint satisfaction and database problems. The Computer Journal
51:303–325

49. Gyssens M, Jeavons PG, Cohen DA (1994) Decomposing constraint satisfaction
problems using database techniques. Artificial Intelligence 66:57–89

30 Oleg Shcherbina

50. Gu J, Purdom PW, Franco J, Wah BW (1997) Algorithms for the satisfiability
(SAT) problem: A survey. In: Satisfiability Problem Theory and Applications

51. Harary F, Norman RZ, Cartwright D (1965) Structural Models: An Introduc-
tion to the Theory of Directed Graphs. John Wiley & Sons.

52. Hammer PL, Rudeanu S (1968) Boolean Methods in Operations Research and
Related Areas, Springer, Berlin Heidelberg New York

53. Heggernes P, Eisenstat SC, Kumfert G, Pothen A (2001) The Com-
putational Complexity of the Minimum Degree Algorithm. Techn. re-
port UCRL-ID-148375. Lawrence Livermore National Laboratory. URL:
http://www.llnl.gov/tid/lof/documents/pdf/241278.pdf

54. Hendrickson B, Rothberg E (1998) Improving the run time and quality of nested
dissection ordering. SIAM J. Sci. Comput. 20(2):468–489

55. Hicks IV, Koster AMCA, Kolotoglu E (2005). Branch and tree
decomposition techniques for discrete optimization. In: Tuto-
rials in Operations Research. INFORMS, New Orleans URL:
http://ie.tamu.edu/People/faculty/Hicks/bwtw.pdf.

56. Hliněný P, Oum S, Seese D, and Gottlob G (2008) Width parameters beyond
tree-width and their applications. The Computer Journal 51:326–362

57. Ho JK, Loute E (1981) A set of staircase linear programming test problems.
Mathematical Programming 20:245–250

58. Hooker JN (2000) Logic-based Methods for Optimization: Combining Opti-
mization and Constraint Satisfaction. John Wiley & Sons, Chichester

59. Hooker JN (2002) Logic, optimization and constraint programming. INFORMS
Journal on Computing 14:295–321

60. Jeavons PG, Gyssens M, Cohen DA (1994) Decomposing constraint satisfaction
problems using database techniques. Artificial Intelligence 66:57–89

61. Jégou P, Ndiaye SN, Terrioux C (2005) Computing and exploiting tree-
decompositions for (Max-)CSP. In: Proceedings of the 11th International Con-
ference on Principles and Practice of Constraint Programming (CP-2005)

62. Jensen FV, Lauritzen SL, Olesen KG (1990) Bayesian updating in causal prob-
abilistic networks by local computations. Computat. Statist. Quart. 4:269–282

63. Kask K, Dechter R, Larrosa J, Dechter A (2005). Unifying cluster-tree decom-
positions for reasoning in graphical models. Artificial Intelligence 160:165–193

64. Kjaerulff U (1990) Triangulation of graphs – algorithms giving small total state
space. Techn.report. Aalborg, Denmark

65. Koster AMCA, van Hoesel CPM, Kolen AWJ (1999) Solving frequency as-
signment problems via tree-decomposition. In: Broersma HJ et al.(Eds). 6th
Twente workshop on graphs and combinatorial optimization. Univ. of Twente,
Enschede, Netherlands

66. Lauritzen SL, Spiegelhalter DJ (1988) Local computation with probabilities on
graphical structures and their application to expert systems. J Roy Statist Soc
Ser B 50:157–224

67. Liu JWH (1990) The role of elimination trees in sparse factorization. SIAM
Journal on Matrix Analysis and Applications 11:134–172

68. Martelli A, Montanari U (1972) Nonserial Dynamic Programming: On the Op-
timal Strategy of Variable Elimination for the Rectangular Lattice. Journal of
Mathematical Analysis and Applications 4O:226–242

69. Mitten LG, Nemhauser GL (1963) Multistage optimization. Chemical Engi-
neering Progress 54:52–60

Local Elimination Algorithms 31

70. Karypis G, Kumar V (1998) MeTiS - a software package for partitioning un-
structured graphs, partitioning meshes, and computing fill-reducing orderings
of sparse matrices. Version 4, University of Minnesota. URL: http://www-
users.cs.umn.edu/ karypis/metis.

71. Mitten LG, Nemhauser GL (1963) Multistage optimization. Chemical Engi-
neering Progress 54:52–60

72. Neapolitan RE (1990) Probabilistic Reasoning in Expert Systems. Wiley, New
York

73. Nemhauser GL, Wolsey LA (1988) Integer and Combinatorial Optimization.
John Wiley & Sons, Chichester

74. Nemhauser GL (1994) The age of optimization: solving large-scale real-world
problems. Operations Research 42:5–13

75. Nowak I (2005) Lagrangian decomposition of block-separable mixed-integer all-
quadratic programs. Mathematical Programming 102:295–312

76. Neumaier A, Shcherbina O (2008) Nonserial dynamic programming and lo-
cal decomposition algorithms in discrete programming (submitted). URL:
http://www.optimization-online.org/DB HTML/2006/03/1351.html

77. Pang W, Goodwin SD (1996) A new synthesis algorithm for solving CSPs. In:
Proc of the 2nd Int Workshop on Constraint-Based Reasoning. Key West

78. Pardalos PM, Du DZ (eds) (1998) Handbook of combinatorial optimization.
Volumes 1, 2, and 3. Kluwer Academic Publishers

79. Pardalos PM, Wolkowicz H (eds) (2003) Novel approaches to hard discrete
optimization. Fields Institute, American Mathematical Society

80. Parter S (1961) The use of linear graphs in Gauss elimination, SIAM Review
3:119–130

81. Pearl J (1988) Probabilistic reasoning in intelligent systems. Morgan Kauf-
mann, San Mateo, CA

82. Ralphs TK, Galati MV (2005) Decomposition in integer linear programming.
In: Karlof J (Ed) Integer Programming: Theory and Practice

83. Robertson N, Seymour PD (1986) Graph minors. II. Algorithmic aspects of
tree width. J of Algorithms 7:309–322

84. Rose D, Tarjan R, Lueker G (1976) Algorithmic aspects of vertex elimination
on graphs. SIAM J on Computing 5:266–283

85. Rose DJ (1972) A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations. In: Read RC (ed) Graph Theory
and Computing, 183–217. Academic Press, New York

86. Rosenthal A (1982) Dynamic programming is optimal for nonserial optimization
problems. SIAM J Comput 11:47–59

87. Seidel P (1981) A new method for solving constraint satisfaction problems. In:
Proc. of the 7th IJCAI, 338–342. Vancouver, Canada

88. Sergienko IV, Shylo VP (2003) Discrete Optimization: Problems, Methods,
Studies. Naukova Dumka, Kiev

89. Shcherbina O (1980) A local algorithm for integer optimization problems. USSR
Comput Math Math Phys 20:276–279

90. Shcherbina OA (1983) On local algorithms of solving discrete optimization
problems. Problems of Cybernetics (Moscow) 40:171–200

91. Shcherbina O (2007) Nonserial dynamic programming and tree decomposi-
tion in discrete optimization. In: Proc. of Int. Conference on Operations Re-
search ”Operations Research 2006”. Karlsruhe, 6-8 September, 2006, 155–160.
Springer Verlag, Berlin

32 Oleg Shcherbina

92. Shcherbina OA (2007) Tree decomposition and discrete optimization problems:
A survey. Cybernetics and Systems Analysis 43:549–562

93. Shcherbina OA (2007) Methodological issues of dynamic programming. Dy-
namich Sistemy 22:21–36 (in Russian)

94. Shcherbina OA (2008) Local elimination algorithms for solving sparse discrete
problems. Comput Math and Math Phys 48:152–167

95. Shenoy PP, Shafer G (1986) Propagating belief functions using local computa-
tions. IEEE Expert 1:43–52

96. Shoikhet K, Geiger D (1997) A practical algorithm for finding optimal trian-
gulation. In: Proceedings of AAAI

97. Urrutia J (2007) Local solutions for global problems in wireless networks. J of
Discrete Algorithms 5:395–407

98. Vanderbeck F, Savelsbergh M (2006) A generic view at the Dantzig-Wolfe de-
composition approach in mixed integer programming. Operations Research Let-
ters 34:296–306

99. Van Roy TJ (1983) Cross decomposition for mixed integer programming. Math-
ematical Programming 25:46–63

100. Wah BW, Li G-J (1988) Systolic processing for dynamic programming prob-
lems. Circuits Systems Signal Process 7:119–149

101. Wilde D, Beightler C (1967) Foundations of Optimization. Prentice-Hall, En-
glewood Cliffs

102. Weigel R, Faltings B (1999) Compiling constraint satisfaction problems. Arti-
ficial Intelligence 115:257–287

103. Wets RJB (1966) Programming under uncertainty: The equivalent convex pro-
gram. SIAM J Appl Math 14:89–105

104. Zhuravlev YuI (1998) Selected Works. Magistr, Moscow (in Russian)
105. Zhuravlev YuI, Losev GF (1995) Neighborhoods in problems of discrete math-

ematics. Cybern Syst Anal 31:183–189

	Graph-based Local Elimination Algorithms in Discrete Optimization
	Oleg Shcherbina

