Abstract
The aim of this chapter is to provide a review of structural decomposition methods in discrete optimization and to give a unified framework in the form of local elimination algorithms (LEA). This chapter is organized as follows. Local elimination algorithms for discrete optimization (DO) problems (DOPs) with constraints are considered; a classification of dynamic programming computational procedures is given. We introduce Elimination Game and Elimination tree. Application of bucket elimination algorithm from constraint satisfaction (CS) to solving DOPs is done. We consider different local elimination schemes and related notions. Clustering that merges several variables into single meta-variable defines a promising approach to solve DOPs. This allows to create a quotient (condensed) graph and apply a local block elimination algorithm. In order to describe a block elimination process, we introduce Block Elimination Game. We discuss the connection of aforementioned local elimination algorithmic schemes and a way of transforming the directed acyclic graph (DAG) of computational LEA procedure to the tree decomposition.
Research supported by FWF (Austrian Science Funds) under the project P17948-N13.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. on Matrix Analysis and Applications 17, 886–905 (1996)
Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Proceedings of UAI (2001)
Aris, R.: The optimal design of chemical reactors. Academic Press, New York (1961)
Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey. BIT 25, 2–23 (1985)
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8(2), 277–284 (1987)
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. of Algorithms 12, 308–340 (1991)
Ashcraft, C.: Compressed graphs and the minimum degree algorithm. SIAM J. Sci. Comput. 16(6), 1404–1411 (1995)
Ashcraft, C., Liu, J.W.H.: Robust ordering of sparse matrices using multisection. SIAM J. Matrix Anal. Appl. 19(3), 816–832 (1995)
Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch and price: Column generation for solving huge integer programs. Operations Research 46, 316–329 (1998)
Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. Journal ACM 30, 479–513 (1983)
Beightler, C.S., Johnson, D.B.: Superposition in branching allocation problems. Journal of Mathematical Analysis and Applications 12, 65–70 (1965)
Bellman, R., Dreyfus, S.: Applied Dynamic Programming. Princeton University Press, Princeton (1962)
Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962)
Bertele, U., Brioschi, F.: A new algorithm for the solution of the secondary optimization problem in nonserial dynamic programming. Journal of Mathematical Analysis and Applications 27, 565–574 (1969)
Bertele, U., Brioschi, F.: Contribution to nonserial dynamic programming. Journal of Mathematical Analysis and Applications 28, 313–325 (1969)
Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press, New York (1972)
Berry, A.: A wide-range efficient algorithm for minimal triangulation. In: Proceedings of SODA (1999)
Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: Graph theory and sparse matrix computation. Springer, New York (1993)
Bodlaender, H.L. (ed.): WG 2003. LNCS, vol. 2880. Springer, Heidelberg (2003)
Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295. Springer, Heidelberg (1997)
Bodlaender, H., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Computer Journal 51, 255–269 (2008)
Burkard, R.E., Hamacher, H.W., Tind, J.: On General Decomposition Schemes in Mathematical Programming. Mathematical Programming Studies 24: Festschrift on the occasion of the 70 th birthday of George B. Dantzig, 238–252 (1985)
Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd Ann. ACM Symp. on Theory of Computing Machinery, New York (1971)
Cook, W., Seymour, P.D.: Tour merging via branch-decomposition. INFORMS Journal on Computing 15, 233–248 (2003)
Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)
Crama, Y., Hansen, P., Jaumard, B.: The basic algorithm for pseudo-boolean programming revisited. Discrete Applied Mathematics 29, 171–185 (1990)
Dantzig, G.B.: Programming of interdependent activities II: Mathematical model. Econometrica 17, 200–211 (1949)
Dantzig, G.B.: Time-staged methods in linear programming. Comments and early history. In: Dantzig, G.B., et al. (eds.) Large-Scale Linear Programming, IIASA, Laxenburg, Austria, pp. 3–16 (1981)
Dantzig, G.B.: Solving staircase linear programs by a nested block-angular method. Technical Report 73-1. Stanford Univ., Dept. of Operations Research, Stanford (1973)
Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V.: Algorithms. McGraw-Hill, New York (2006)
Dechter, R.: Constraint networks. In: Encyclopedia of Artificial Intelligence, 2nd edn. Wiley, New York (1992)
Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113, 41–85 (1999)
Dechter, R., El Fattah, Y.: Topological parameters for time-space tradeoff. Artificial Intelligence 125, 93–118 (2001)
Dechter, R.: Constraint processing. Morgan Kaufmann, San Francisco (2003)
Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence 38, 353–366 (1989)
Dolgui, A., Soldek, J., Zaikin, O. (eds.): Supply chain optimisation: product/process design, facilities location and flow control. Series: Applied Optimization, vol. 94, XVI. Springer, Heidelberg (2005)
Esogbue, A.O., Marks, B.: Non-serial dynamic programming – A survey. Operational Research Quarterly 25, 253–265 (1974)
Fernandez-Baca, D.: Nonserial dynamic programming formulations of satisfiability. Information Processing Letters 27, 323–326 (1988)
YuYu, F.: On solving discrete programming problems of special form. Economics and Mathematical Methods 1, 262–270 (1965) (Russian)
Floudas, C.A.: Nonlinear and mixed-integer optimization: fundamentals and applications. Oxford University Press, Oxford (1995)
Fomin, F., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)
Fourer, R.: Staircase matrices and systems. SIAM Review 26(1), 1–70 (1984)
Freuder, E.: Constraint solving techniques. In: Tyngu, E., Mayoh, B., Penjaen, J. (eds.) Constraint Programming of series F: Computer and System Sciences. NATO ASI Series, pp. 51–74 (1992)
Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. of Mathematics 15, 835–855 (1965)
George, J.A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall Inc., Englewood Cliffs (1981)
Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of UAI (2004)
Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artificial Intelligence 124, 243–282 (2000)
Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction and database problems. The Computer Journal 51, 303–325 (2008)
Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence 66, 57–89 (1994)
Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability (SAT) problem: A survey. Satisfiability Problem Theory and Applications (1997)
Harary, F., Norman, R.Z., Cartwright, D.: Structural Models: An Introduction to the Theory of Directed Graphs. John Wiley & Sons, Chichester (1965)
Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas. Springer, Heidelberg (1968)
Heggernes, P., Eisenstat, S.C., Kumfert, G., Pothen, A.: The Computational Complexity of the Minimum Degree Algorithm. Techn. report UCRL-ID-148375. Lawrence Livermore National Laboratory (2001), http://www.llnl.gov/tid/lof/documents/pdf/241278.pdf
Hendrickson, B., Rothberg, E.: Improving the run time and quality of nested dissection ordering. SIAM J. Sci. Comput. 20(2), 468–489 (1998)
Hicks, I.V., Koster, A.M.C.A., Kolotoglu, E.: Branch and tree decomposition techniques for discrete optimization. In: Tutorials in Operations Research. INFORMS, New Orleans (2005), http://ie.tamu.edu/People/faculty/Hicks/bwtw.pdf
Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. The Computer Journal 51, 326–362 (2008)
Ho, J.K., Loute, E.: A set of staircase linear programming test problems. Mathematical Programming 20, 245–250 (1981)
Hooker, J.N.: Logic-based Methods for Optimization: Combining Optimization and Constraint Satisfaction. John Wiley & Sons, Chichester (2000)
Hooker, J.N.: Logic, optimization and constraint programming. INFORMS Journal on Computing 14, 295–321 (2002)
Jeavons, P.G., Gyssens, M., Cohen, D.A.: Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence 66, 57–89 (1994)
Jégou, P., Ndiaye, S.N., Terrioux, C.: Computing and exploiting tree-decompositions for (Max-)CSP. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 777–781. Springer, Heidelberg (2005)
Jensen, F.V., Lauritzen, S.L., Olesen, K.G.: Bayesian updating in causal probabilistic networks by local computations. Computat. Statist. Quart. 4, 269–282 (1990)
Kask, K., Dechter, R., Larrosa, J., Dechter, A.: Unifying cluster-tree decompositions for reasoning in graphical models. Artificial Intelligence 160, 165–193 (2005)
Kjaerulff, U.: Triangulation of graphs – algorithms giving small total state space. Techn.report. Aalborg, Denmark (1990)
Koster, A.M.C.A., van Hoesel, C.P.M., Kolen, A.W.J.: Solving frequency assignment problems via tree-decomposition. In: Broersma, H.J., et al. (eds.) 6th Twente workshop on graphs and combinatorial optimization. Univ. of Twente, Enschede, Netherlands (1999)
Lauritzen, S.L., Spiegelhalter, D.J.: Local computation with probabilities on graphical structures and their application to expert systems. J. Roy. Statist. Soc. Ser. B 50, 157–224 (1988)
Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM Journal on Matrix Analysis and Applications 11, 134–172 (1990)
Martelli, A., Montanari, U.: Nonserial Dynamic Programming: On the Optimal Strategy of Variable Elimination for the Rectangular Lattice. Journal of Mathematical Analysis and Applications 40, 226–242 (1972)
Mitten, L.G., Nemhauser, G.L.: Multistage optimization. Chemical Engineering Progress 54, 52–60 (1963)
Karypis, G., Kumar, V.: MeTiS - a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Version 4, University of Minnesota (1998), http://www-users.cs.umn.edu/~karypis/metis
Mitten, L.G., Nemhauser, G.L.: Multistage optimization. Chemical Engineering Progress 54, 52–60 (1963)
Neapolitan, R.E.: Probabilistic Reasoning in Expert Systems. Wiley, New York (1990)
Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John Wiley & Sons, Chichester (1988)
Nemhauser, G.L.: The age of optimization: solving large-scale real-world problems. Operations Research 42, 5–13 (1994)
Nowak, I.: Lagrangian decomposition of block-separable mixed-integer all-quadratic programs. Mathematical Programming 102, 295–312 (2005)
Neumaier, A., Shcherbina, O.: Nonserial dynamic programming and local decomposition algorithms in discrete programming (submitted, 2008), http://www.optimization-online.org/DB_HTML/2006/03/1351.html
Pang, W., Goodwin, S.D.: A new synthesis algorithm for solving CSPs. In: Proc. of the 2nd Int. Workshop on Constraint-Based Reasoning. Key West (1996)
Pardalos, P.M., Du, D.Z. (eds.): Handbook of combinatorial optimization, vol. 1, 2, and 3. Kluwer Academic Publishers, Dordrecht (1998)
Pardalos, P.M., Wolkowicz, H. (eds.): Novel approaches to hard discrete optimization. Fields Institute, American Mathematical Society (2003)
Parter, S.: The use of linear graphs in Gauss elimination. SIAM Review 3, 119–130 (1961)
Pearl, J.: Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San Mateo (1988)
Ralphs, T.K., Galati, M.V.: Decomposition in integer linear programming. In: Karlof, J. (ed.) Integer Programming: Theory and Practice (2005)
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree width. J. of Algorithms 7, 309–322 (1986)
Rose, D., Tarjan, R., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. on Computing 5, 266–283 (1976)
Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Read, R.C. (ed.) Graph Theory and Computing, pp. 183–217. Academic Press, New York (1972)
Rosenthal, A.: Dynamic programming is optimal for nonserial optimization problems. SIAM J. Comput. 11, 47–59 (1982)
Seidel, P.: A new method for solving constraint satisfaction problems. In: Proc. of the 7th IJCAI, Vancouver, Canada, pp. 338–342 (1981)
Sergienko, I.V., Shylo, V.P.: Discrete Optimization: Problems, Methods, Studies, Naukova Dumka, Kiev (2003)
Shcherbina, O.: A local algorithm for integer optimization problems. USSR Comput. Math. Phys. 20, 276–279 (1980)
Shcherbina, O.A.: On local algorithms of solving discrete optimization problems. Problems of Cybernetics (Moscow) 40, 171–200 (1983)
Shcherbina, O.: Nonserial dynamic programming and tree decomposition in discrete optimization. In: Proc. of Int. Conference on Operations Research Operations Research 2006, Karlsruhe, September 6-8, pp. 155–160. Springer, Berlin (2006)
Shcherbina, O.A.: Tree decomposition and discrete optimization problems: A survey. Cybernetics and Systems Analysis 43, 549–562 (2007)
Shcherbina, O.A.: Methodological issues of dynamic programming. Dynamich Sistemy 22, 21–36 (2007) (in Russian)
Shcherbina, O.A.: Local elimination algorithms for solving sparse discrete problems. Comput. Math. and Math. Phys. 48, 152–167 (2008)
Shenoy, P.P., Shafer, G.: Propagating belief functions using local computations. IEEE Expert 1, 43–52 (1986)
Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulation. In: Proceedings of AAAI (1997)
Urrutia, J.: Local solutions for global problems in wireless networks. J. of Discrete Algorithms 5, 395–407 (2007)
Vanderbeck, F., Savelsbergh, M.: A generic view at the Dantzig-Wolfe decomposition approach in mixed integer programming. Operations Research Letters 34, 296–306 (2006)
Van Roy, T.J.: Cross decomposition for mixed integer programming. Mathematical Programming 25, 46–63 (1983)
Wah, B.W., Li, G.-J.: Systolic processing for dynamic programming problems. Circuits Systems Signal Process 7, 119–149 (1988)
Wilde, D., Beightler, C.: Foundations of Optimization. Prentice-Hall, Englewood Cliffs (1967)
Weigel, R., Faltings, B.: Compiling constraint satisfaction problems. Artificial Intelligence 115, 257–287 (1999)
Wets, R.J.B.: Programming under uncertainty: The equivalent convex program. SIAM J. Appl. Math. 14, 89–105 (1966)
YuI, Z.: Selected Works. Magistr, Moscow (1998) (in Russian)
YuI, Z., Losev, G.: Neighborhoods in problems of discrete mathematics. Cybern. Syst. Anal. 31, 183–189 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Shcherbina, O. (2009). Graph-Based Local Elimination Algorithms in Discrete Optimization. In: Abraham, A., Hassanien, AE., Siarry, P., Engelbrecht, A. (eds) Foundations of Computational Intelligence Volume 3. Studies in Computational Intelligence, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01085-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-01085-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01084-2
Online ISBN: 978-3-642-01085-9
eBook Packages: EngineeringEngineering (R0)