Abstract
Clustering algorithms have been successfully applied to several data analysis problems in a wide range of domains, such as image processing, bioinformatics, crude oil analysis, market segmentation, document categorization, and web mining. The need for organizing data into categories of similar objects has made the task of clustering very important to these domains. In this context, there has been an increasingly interest in the study of evolutionary algorithms for clustering, especially those algorithms capable of finding blurred clusters that are not clearly separated from each other. In particular, a number of evolutionary algorithms for fuzzy clustering have been addressed in the literature. This chapter has two main contributions. First, it presents an overview of evolutionary algorithms designed for fuzzy clustering. Second, it describes a fuzzy version of an evolutionary algorithm for clustering, which has shown to be more computationally efficient than systematic (i.e., repetitive) approaches when the number of clusters in a data set is unknown. Illustrative experiments showing the influence of local optimization on the efficiency of the evolutionary search are also presented. These experiments reveal interesting aspects of the effect of an important parameter found in many evolutionary algorithms for clustering, namely, the number of iterations of a given local search procedure to be performed at each generation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alves, V.S., Campello, R.J.G.B., Hruschka, E.R.: A Fuzzy Variant of an Evolutionary Algorithm for Clustering. In: Proc. IEEE Int. Conference on Fuzzy Systems, pp. 375–380 (2007)
Arabie, L.J., Hubert, G., DeSoete, P.: Clustering and Classification. World Scientific, Singapore (1999)
Babu, G.P., Murty, M.N.: Clustering with Evolution Strategies. Pattern Recognition 27, 321–329 (1994)
Babuška, R.: Fuzzy Modeling for Control. Kluwer, Dordrecht (1998)
Baldi, P., Brunak, S.: Bioinformatics - The Machine Learning Approach, 2nd edn. MIT Press, Cambridge (2001)
Bertone, P., Gerstein, M.: Integrative Data Mining: The New Direction in Bioinformatics – Machine Learning for Analyzing Genome-Wide Expression Profiles. IEEE Engineering in Medicine and Biology 20, 33–40 (2001)
Bezdek, J.C., Pal, N.R.: Some new indexes of cluster validity. IEEE Trans. on Systems, Man and Cybernetics − B 28, 301–315 (1998)
Bezdek, J.C., Hathaway, R.J.: Optimization of Fuzzy Clustering Criteria using Genetic Algorithms. In: Proc. IEEE World Congress on Computational Intelligence, pp. 589–594 (1994)
Bezdek, J.C., Hathaway, R.J., Howard, R.E., Wilson, C.A., Windham, M.P.: Local Convergence Analysis of a Grouped Variable Version of Coordinate Descent. Journal of Optimization Theory and Applications 54, 471–477 (1987)
Bezdek, J.C., Hathaway, R.J., Sabin, M.J., Tucker, H.T.: Convergence Theory for Fuzzy C-Means: Counterexamples and Repairs. IEEE Trans. on Systems, Man and Cybernetics SMC-17, 873–877 (1987)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum Press (1981)
Bigus, J.P.: Data Mining with Neural Networks. McGraw-Hill, New York (1996)
Campello, R.J.G.B., Alves, V.S., Hruschka, E.R.: On the Efficiency of Evolutionary Fuzzy Clustering. Journal of Heuristics, doi:10.1007/s10732-007-9059-6
Campello, R.J.G.B., Hruschka, E.R.: A Fuzzy Extension of the Silhouette Width Criterion for Cluster Analysis. Fuzzy Sets and Systems 157(21), 2858–2875 (2006)
Davis, L.: Handbook of Genetic Algorithms. International Thomson Computer Press (1996)
de Oliveira, J.V., Pedrycz, W.: Advances in Fuzzy Clustering and its Applications. Wiley, Chichester (2007)
Egan, M.A., Krishnamoorthy, M., Rajan, K.: Comparative Study of a Genetic Fuzzy C-Means Algorithm and a Validity Guided Fuzzy C-Means Algorithm for Locating Clusters in Noisy Data. In: Proc. IEEE World Congress on Computational Intelligence, pp. 440–445 (1998)
Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis. Arnold Publishers (2001)
Falkenauer, E.: Genetic Algorithms and Grouping Problems. John Wiley & Sons, Chichester (1998)
Fazendeiro, P., Valente de Oliveira, J.: A Semantic Driven Evolutive Fuzzy Clustering Algorithm. In: Proc. IEEE Int. Conference on Fuzzy Systems, pp. 1–6 (2007)
Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE Press, New York (1995)
Fogel, D.B., Simpson, P.K.: Evolving Fuzzy Clusters. In: Proc. IEEE Int. Conference on Neural Networks, pp. 1829–1834 (1993)
Fralley, C., Raftery, A.E.: How Many Clusters? Which Clustering Method? Answer via Model-Based Cluster Analysis. The Computer Journal 41, 578–588 (1998)
Freitas, A.: A Review of Evolutionary Algorithms for Data Mining. In: Maimon, O., Rokach, L. (eds.) Soft Computing for Knowledge Discovery and Data Mining, pp. 61–93. Springer, Heidelberg (2007)
Ghozeil, A., Fogel, D.B.: Discovering Patterns in Spatial Data using Evolutionary Programming. In: Proc. 1st Annual Conference on Genetic Programming, pp. 521–527 (1996)
Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On Clustering Validation Techniques. Journal of Intelligent Information Systems 17, 107–145 (2001)
Hall, L.O., Bezdek, J.C., Boggavarpu, S., Bensaid, A.: Genetic Fuzzy Clustering. In: Proc. Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS), pp. 411–415 (1994)
Hall, L.O., Özyurt, B.: Scaling Genetically Guided Fuzzy Clustering. In: Proc. Int. Symposium on Uncertainty Modeling and Analysis & Annual Conference of the North American Fuzzy Information Processing Society (ISUMA-NAFIPS), pp. 328–332 (1995)
Hall, L.O., Özyurt, I.B., Bezdek, J.C.: Clustering with a Genetically Optimized Approach. IEEE Trans. on Evolutionary Computation 3, 103–112 (1999)
Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis: Methods for Classification. In: Data Analysis and Image Recognition. Wiley, Chichester (1999)
Hruschka, E.R., Campello, R.J.G.B., de Castro, L.N.: Clustering Gene-Expression Data: A Hybrid Approach that Iterates between k-Means and Evolutionary Search. In: Grosan, C., Abraham, A., Ishibuchi, H. (eds.) Hybrid Evolutionary Algorithms, pp. 313–335. Springer, Heidelberg (2007)
Hruschka, E.R., Campello, R.J.G.B., de Castro, L.N.: Evolutionary Search for Optimal Fuzzy C-Means Clustering. In: Proc. Int. Conference on Fuzzy Systems, pp. 685–690 (2004)
Hruschka, E.R., Campello, R.J.G.B., de Castro, L.N.: Evolving Clusters in Gene-Expression Data. Information Sciences 176, 1898–1927 (2006)
Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., Carvalho, A.C.P.L.F.: A Survey of Evolutionary Algorithms for Clustering. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews (to appear)
Hruschka, E.R., de Castro, L.N., Campello, R.J.G.B.: Evolutionary Algorithms for Clustering Gene-Expression Data. In: Proc. 4th IEEE Int. Conference on Data Mining, pp. 403–406 (2004)
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31, 264–323 (1999)
Jiang, D., Tang, C., Zhang, A.: Cluster Analysis for Gene Expression Data: A Survey. IEEE Trans. on Knowledge and Data Engineering 16, 1370–1386 (2004)
Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data – An Introduction to Cluster Analysis. Wiley Series in Probability and Mathematical Statistics (1990)
Klawonn, F.: Fuzzy Clustering with Evolutionary Algorithms. In: Proc. of 7th Int. Fuzzy Systems Association (IFSA) World Congress, pp. 312–323 (1997)
Kolen, J.F., Hutcheson, T.: Reducing the Time Complexity of the Fuzzy C-Means Algorithm. IEEE Trans. on Fuzzy Systems 10, 263–267 (2002)
Liu, H., Li, J., Chapman, M.A.: Automated Road Extraction from Satellite Imagery using Hybrid Genetic Algorithms and Cluster Analysis. Journal of Environmental Informatics 1(2), 40–47 (2003)
Liu, J., Xie, W.: A Genetics-Based Approach to Fuzzy Clustering. In: Proc. Int. Conference on Fuzzy Systems, pp. 2233–2240 (1995)
MacQueen, J.B.: Some Methods of Classification and Analysis of Multivariate Observations. In: Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)
Maulik, U., Bandyopadhyay, S.: Fuzzy Partitioning Using Real Coded Variable Length Genetic Algorithm for Pixel Classification. IEEE Trans. on Geosciences and Remote Sensing 41(5), 1075–1081 (2003)
Mecca, G., Raunich, S., Pappalardo, A.: A New Algorithm for Clustering Search Results. Data and Knowledge Engineering 62, 504–522 (2007)
Milligan, G.: A Monte Carlo Study of Thirty Internal Criterion Measures for Cluster Analysis. Psychometrika 46(2), 187–199 (1981)
Milligan, G.W., Cooper, M.C.: An Examination of Procedures for Determining the Number of Clusters in a Data Set. Psychometrika 50, 159–179 (1985)
Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: A Study of some Fuzzy Cluster Validity Indices, Genetic Clustering and Application to Pixel Classification. Fuzzy Sets and Systems 155, 191–214 (2005)
Pal, N.R., Bezdek, J.C.: On Cluster Validity for the Fuzzy c-Means Model. IEEE Transactions on Fuzzy Systems 3(3) (1995)
Pantel, P.A.: Clustering by Commitee, PhD Thesis, Department of Computer Sciences of the University of Alberta, Canada (2003)
Park, H.-S., Yoo, S.-H., Cho, S.-B.: Evolutionary Fuzzy Clustering Algorithm with Knowledge-Based Evaluation and Applications for Gene Expression Profiling. Journal of Computational and Theoretical Nanoscience 2, 1–10 (2005)
Rayward-Smith, V.J.: Metaheuristics for Clustering in KDD. In: Proc. IEEE Congress on Evolutionary Computation, pp. 2380–2387 (2005)
Rezaee, M.R., Lelieveldt, B.P.F., Reiber, J.H.C.: A New Cluster Validity Index for the Fuzzy c-Mean. Pattern Recognition Letters 19, 237–246 (1998)
Srikanth, R., George, R., Warsi, N., Prabhu, D., Petry, F.E., Buckles, B.P.: A Variable-Length Genetic Algorithm for Clustering and Classification. Pattern Recognition Letters 16, 789–800 (1995)
Sun, H., Wang, S., Jiang, Q.: FCM-Based Model Selection Algorithms for Determining the Number of Clusters. Pattern Recognition Letters 37, 2027–2037 (2004)
Valafar, F.: Pattern Recognition Techniques in Microarray Data Analysis: A Survey. Annals of New York Academy of Sciences 980, 41–64 (2002)
Van Le, T.: Evolutionary Fuzzy Clustering. In: Proc. IEEE Congress on Evolutionary Computation, pp. 753–758 (1995)
Xu, R., Wunsch II, D.: Survey of Clustering Algorithms. IEEE Trans. on Neural Networks 16, 645–678 (2005)
Yuan, B., Klir, G.J., Swan-Stone, J.F.: Evolutionary Fuzzy C-Means Clustering Algorithm. In: Proc. Int. Conference on Fuzzy Systems, pp. 2221–2226 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Horta, D., Naldi, M., Campello, R.J.G.B., Hruschka, E.R., de Carvalho, A.C.P.L.F. (2009). Evolutionary Fuzzy Clustering: An Overview and Efficiency Issues. In: Abraham, A., Hassanien, AE., de Carvalho, A.P.d.L.F. (eds) Foundations of Computational Intelligence Volume 4. Studies in Computational Intelligence, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01088-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-01088-0_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01087-3
Online ISBN: 978-3-642-01088-0
eBook Packages: EngineeringEngineering (R0)