Skip to main content

Linear Models for Visual Data Mining in Medical Images

  • Chapter
Foundations of Computational, IntelligenceVolume 6

Part of the book series: Studies in Computational Intelligence ((SCI,volume 206))

  • 1016 Accesses

Summary

Modern non-invasive imaging modalities such as Computer-Aided Tomography and Magnetic Resonance Imaging brought a new perspective to anatomic characterization, as they allowed detailed observation of in vivo structures. The amount of provided data became, however, progressively overwhelming. Data may be useless if we are not able to extract relevant information from them and to discard undesirable artifacts and redundancy. Ultimately, we aim to discover new knowledge from collected data, and to be able to statistically represent this knowledge in the form of prior distributions that may be used to validate new hypotheses, in addition to clinical and demographic information. In this chapter we propose an analysis of available methods for data mining in very high-dimensional sets of data obtained from medical imaging modalities. When applied to imaging studies, data reduction methods may be able to minimize data redundancy and reveal subtle or hidden patterns. Our analysis is concentrated on linear transformation models based on unsupervised learning that explores the relationships among morphologic variables, in order to find clusters with strong correlation. This clustering can potentially identify regions that have anatomic significance and thus lend insight to knowledge discovery and hypothesis testing. We illustrate this chapter with successful case studies related to the segmentation of neuroanatomic structures and the characterization of pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bajcsy, R., Broit, C.: Matching of deformed images. In: VI International Conference on Pattern Recognition, pp. 351–353 (1982)

    Google Scholar 

  2. Bajcsy, R., Kovacic, S.: Multiresolution elastic matching. Computer Vision, Graphics and Image Processing 46, 1–21 (1989)

    Article  Google Scholar 

  3. Christensen, G., Rabbitt, R., Miller, M.: Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  4. Cootes, T., Hill, A., Taylor, C.J., Haslam, J.: Use of active shape models for locating structures in medical images. Image and Vision Computing 12(6), 355–365 (1994)

    Article  Google Scholar 

  5. D’Agostino, R.B.: Small sample probability points for the D test of normality. Biometrika 59, 219–221 (1972)

    Article  Google Scholar 

  6. Davatzikos, C., Prince, J.: An active contour model for mapping the cortex. IEEE Transactions on Medical Imaging 14, 65–80 (1995)

    Article  Google Scholar 

  7. Davatzikos, C., Vaillant, M., Resnick, S., Prince, J., Letovsky, S., Bryan, R.: A computerized approach for morphological analysis of the corpus callosum. Journal of Computer Assisted Tomography 20(1), 88–97 (1996)

    Article  Google Scholar 

  8. Denenberg, V.H., Kertesz, A., Cowell, P.E.: A factor analysis of the human’s corpus callosum. Brain Research 548, 126–132 (1991)

    Article  Google Scholar 

  9. Duta, N., Sonka, M.: Segmentation and interpretation of mr brain images: An improved active shape model. IEEE Transactions on Medical Imaging 17(6), 1049–1062 (1995)

    Article  Google Scholar 

  10. Evans, A., Collins, D., Brown, E., Kelly, R., Petters, T.: A 3D statistical neuroanatomical models for 305 MRI volumes. In: IEEE Nuclear Science Symposium/Medical Imaging Conference, pp. 1813–1817 (1993)

    Google Scholar 

  11. Frackowiak, R., Friston, K., Frith, C., Dolan, R., Mazziotta, J.: Human Brain Function. Academic Press, San Diego (1997)

    Google Scholar 

  12. Gee, J.C.: On matching brain volumes. Pattern Recognition 32, 99–111 (1999)

    Article  Google Scholar 

  13. Grossman, M., McMillan, C., Moore, P., Ding, L., Glosser, G., Work, M., Gee, J.: What’s in a name: voxel-based morphometric analyses of MRI and naming difficulty in alzheimer’s disease, frontotemporal dementia and corticobasal degeneration. Brain 127, 1–22 (2004)

    Article  Google Scholar 

  14. Harman, H.: Modern Factor Analysis. University of Chicago Press, Chicago (1976)

    Google Scholar 

  15. Hotelling, H.: The relations of the new multivariate statistical methods to factor analysis. British Journal of Statistical Psychology 10, 69–79 (1957)

    Google Scholar 

  16. Jöreskog, K.: Some contributions to maximum likelihood factor analysis. Psychometrika 32, 443–482 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jöreskog, K., Goldberger, A.S.: Factor analysis by generalized least squares. Psychometrika 37, 243–260 (1968)

    Article  Google Scholar 

  18. Jöreskog, K., Lawley, D.N.: New metrods in maximum likelihood factor analysis. British Journal of Mathematical and Statistical Psychology 21, 85–96 (1968)

    MathSciNet  Google Scholar 

  19. lawley, D.N.: The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh 60, 64–82 (1940)

    MATH  MathSciNet  Google Scholar 

  20. Le Briquer, L., Gee, J.C.: Design of a Statistical Model of Brain Shape. In: Duncan, J.S., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp. 477–482. Springer, Heidelberg (1997)

    Google Scholar 

  21. Lin, C.C., Muldholkar, G.S.: A simple test for normality against asymetric alternatives. Biometrika 67, 455–461 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Machado, A., Gee, J.C.: Atlas warping for brain morphometry. In: Hanson, K.M. (ed.) Proceedings of the SPIE Medical Imaging 1998: Image Processing, pp. 642–651. Bellingham, San Diego (1998)

    Google Scholar 

  23. Machado, A., Simon, T., Nguyen, V., McDonald-McGinn, D., Zackai, E., Gee, J.: Corpus callosum morphology and ventricular size in chromosome 22q11.2 deletion syndrome. Brain Research 1131, 197–210 (2007)

    Article  Google Scholar 

  24. Marcus, L.: Traditional Morphometrics. In: Rohlf, F.J., Bookstein, F.L. (eds.) Proceedings of the Michigan Morphometrics Workshop, Ann Arbor, The University of Michigan Museum of Zoology, pp. 77–122 (1990)

    Google Scholar 

  25. Martin, J., Pentland, A., Sclaroff, S., Kikinis, R.: Characterization of neuropathological shape deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(2), 97–112 (1998)

    Article  Google Scholar 

  26. Reyment, R., Jöreskog, K.: Applied Factor Analysis in the Natural Sciences. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  27. Roweis, S., Ghahramani, Z.: A unifying review of linear gaussian models. Neural Computation 11(2), 305–345 (1999)

    Article  Google Scholar 

  28. Sclaroff, S., Pentland, A.: Modal matching for correspondence and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(6), 545–561 (1995)

    Article  Google Scholar 

  29. Simon, T.J., Bearden, C.E., McDonald-McGinn, D.M., Zackai: Visuospatial and numerical cognitive deficits in children with chromosome 22q11.2 deletion syndrome. Cortex 41, 145–155 (2005)

    Article  Google Scholar 

  30. Spearman, C.: General intelligence, objectively determined and measured. American Journal of Psychology 15, 201–293 (1904)

    Article  Google Scholar 

  31. Stievenart, J.L., Iba-Zizen, M.T., Tourbah, A., Lopez, A., Thibierge, M., Abanou, A., Canabis, A.: Minimal surface: A useful paradigm to describe the deeper part of the corpus callosum? Brain Research Bulletin 44(2), 117–124 (1997)

    Article  Google Scholar 

  32. Thompson, P.M., Moussai, J., Zohoori, S., Goldkorn, A., Khan, A., Mega, M.S., Small, G., Cummings, J., Toga, A.W.: Cortical variability and assymetry in normal aging and Alzheimer’s disease. Cerebral Cortex 8, 492–509 (1998)

    Article  Google Scholar 

  33. Thomson, G.H.: Hotelling’s method modified to give Spearman’s g. Journal of Educational Psychology 25, 366–374 (1934)

    Article  Google Scholar 

  34. Thurstone, L.L.: Multiple factor analysis. Psychological Reviews 38, 406–427 (1931)

    Article  Google Scholar 

  35. Witelson, S.F.: Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 112, 799–835 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Machado, A.M.C. (2009). Linear Models for Visual Data Mining in Medical Images. In: Abraham, A., Hassanien, AE., de Leon F. de Carvalho, A.P., SnĂĄĆĄel, V. (eds) Foundations of Computational, IntelligenceVolume 6. Studies in Computational Intelligence, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01091-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01091-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01090-3

  • Online ISBN: 978-3-642-01091-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics