Summary
Modern non-invasive imaging modalities such as Computer-Aided Tomography and Magnetic Resonance Imaging brought a new perspective to anatomic characterization, as they allowed detailed observation of in vivo structures. The amount of provided data became, however, progressively overwhelming. Data may be useless if we are not able to extract relevant information from them and to discard undesirable artifacts and redundancy. Ultimately, we aim to discover new knowledge from collected data, and to be able to statistically represent this knowledge in the form of prior distributions that may be used to validate new hypotheses, in addition to clinical and demographic information. In this chapter we propose an analysis of available methods for data mining in very high-dimensional sets of data obtained from medical imaging modalities. When applied to imaging studies, data reduction methods may be able to minimize data redundancy and reveal subtle or hidden patterns. Our analysis is concentrated on linear transformation models based on unsupervised learning that explores the relationships among morphologic variables, in order to find clusters with strong correlation. This clustering can potentially identify regions that have anatomic significance and thus lend insight to knowledge discovery and hypothesis testing. We illustrate this chapter with successful case studies related to the segmentation of neuroanatomic structures and the characterization of pathologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bajcsy, R., Broit, C.: Matching of deformed images. In: VI International Conference on Pattern Recognition, pp. 351â353 (1982)
Bajcsy, R., Kovacic, S.: Multiresolution elastic matching. Computer Vision, Graphics and Image Processing 46, 1â21 (1989)
Christensen, G., Rabbitt, R., Miller, M.: Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing 5(10), 1435â1447 (1996)
Cootes, T., Hill, A., Taylor, C.J., Haslam, J.: Use of active shape models for locating structures in medical images. Image and Vision Computing 12(6), 355â365 (1994)
DâAgostino, R.B.: Small sample probability points for the D test of normality. Biometrika 59, 219â221 (1972)
Davatzikos, C., Prince, J.: An active contour model for mapping the cortex. IEEE Transactions on Medical Imaging 14, 65â80 (1995)
Davatzikos, C., Vaillant, M., Resnick, S., Prince, J., Letovsky, S., Bryan, R.: A computerized approach for morphological analysis of the corpus callosum. Journal of Computer Assisted Tomography 20(1), 88â97 (1996)
Denenberg, V.H., Kertesz, A., Cowell, P.E.: A factor analysis of the humanâs corpus callosum. Brain Research 548, 126â132 (1991)
Duta, N., Sonka, M.: Segmentation and interpretation of mr brain images: An improved active shape model. IEEE Transactions on Medical Imaging 17(6), 1049â1062 (1995)
Evans, A., Collins, D., Brown, E., Kelly, R., Petters, T.: A 3D statistical neuroanatomical models for 305 MRI volumes. In: IEEE Nuclear Science Symposium/Medical Imaging Conference, pp. 1813â1817 (1993)
Frackowiak, R., Friston, K., Frith, C., Dolan, R., Mazziotta, J.: Human Brain Function. Academic Press, San Diego (1997)
Gee, J.C.: On matching brain volumes. Pattern Recognition 32, 99â111 (1999)
Grossman, M., McMillan, C., Moore, P., Ding, L., Glosser, G., Work, M., Gee, J.: Whatâs in a name: voxel-based morphometric analyses of MRI and naming difficulty in alzheimerâs disease, frontotemporal dementia and corticobasal degeneration. Brain 127, 1â22 (2004)
Harman, H.: Modern Factor Analysis. University of Chicago Press, Chicago (1976)
Hotelling, H.: The relations of the new multivariate statistical methods to factor analysis. British Journal of Statistical Psychology 10, 69â79 (1957)
Jöreskog, K.: Some contributions to maximum likelihood factor analysis. Psychometrika 32, 443â482 (1967)
Jöreskog, K., Goldberger, A.S.: Factor analysis by generalized least squares. Psychometrika 37, 243â260 (1968)
Jöreskog, K., Lawley, D.N.: New metrods in maximum likelihood factor analysis. British Journal of Mathematical and Statistical Psychology 21, 85â96 (1968)
lawley, D.N.: The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh 60, 64â82 (1940)
Le Briquer, L., Gee, J.C.: Design of a Statistical Model of Brain Shape. In: Duncan, J.S., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp. 477â482. Springer, Heidelberg (1997)
Lin, C.C., Muldholkar, G.S.: A simple test for normality against asymetric alternatives. Biometrika 67, 455â461 (1980)
Machado, A., Gee, J.C.: Atlas warping for brain morphometry. In: Hanson, K.M. (ed.) Proceedings of the SPIE Medical Imaging 1998: Image Processing, pp. 642â651. Bellingham, San Diego (1998)
Machado, A., Simon, T., Nguyen, V., McDonald-McGinn, D., Zackai, E., Gee, J.: Corpus callosum morphology and ventricular size in chromosome 22q11.2 deletion syndrome. Brain Research 1131, 197â210 (2007)
Marcus, L.: Traditional Morphometrics. In: Rohlf, F.J., Bookstein, F.L. (eds.) Proceedings of the Michigan Morphometrics Workshop, Ann Arbor, The University of Michigan Museum of Zoology, pp. 77â122 (1990)
Martin, J., Pentland, A., Sclaroff, S., Kikinis, R.: Characterization of neuropathological shape deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(2), 97â112 (1998)
Reyment, R., Jöreskog, K.: Applied Factor Analysis in the Natural Sciences. Cambridge University Press, Cambridge (1996)
Roweis, S., Ghahramani, Z.: A unifying review of linear gaussian models. Neural Computation 11(2), 305â345 (1999)
Sclaroff, S., Pentland, A.: Modal matching for correspondence and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(6), 545â561 (1995)
Simon, T.J., Bearden, C.E., McDonald-McGinn, D.M., Zackai: Visuospatial and numerical cognitive deficits in children with chromosome 22q11.2 deletion syndrome. Cortex 41, 145â155 (2005)
Spearman, C.: General intelligence, objectively determined and measured. American Journal of Psychology 15, 201â293 (1904)
Stievenart, J.L., Iba-Zizen, M.T., Tourbah, A., Lopez, A., Thibierge, M., Abanou, A., Canabis, A.: Minimal surface: A useful paradigm to describe the deeper part of the corpus callosum? Brain Research Bulletin 44(2), 117â124 (1997)
Thompson, P.M., Moussai, J., Zohoori, S., Goldkorn, A., Khan, A., Mega, M.S., Small, G., Cummings, J., Toga, A.W.: Cortical variability and assymetry in normal aging and Alzheimerâs disease. Cerebral Cortex 8, 492â509 (1998)
Thomson, G.H.: Hotellingâs method modified to give Spearmanâs g. Journal of Educational Psychology 25, 366â374 (1934)
Thurstone, L.L.: Multiple factor analysis. Psychological Reviews 38, 406â427 (1931)
Witelson, S.F.: Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 112, 799â835 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Machado, A.M.C. (2009). Linear Models for Visual Data Mining in Medical Images. In: Abraham, A., Hassanien, AE., de Leon F. de Carvalho, A.P., SnĂĄĆĄel, V. (eds) Foundations of Computational, IntelligenceVolume 6. Studies in Computational Intelligence, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01091-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-01091-0_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01090-3
Online ISBN: 978-3-642-01091-0
eBook Packages: EngineeringEngineering (R0)