Skip to main content

EPOS-Epistemological Perspectives on Simulation: An Introduction

  • Conference paper
Epistemological Aspects of Computer Simulation in the Social Sciences (EPOS 2006)

Abstract

There is strong evidence that computer simulation is increasingly recognized as an important analytical tool in many social sciences disciplines and fields. During the last ten years, a number of new journals, which are devoted to this field, have been founded and others have increased their influence (i.e., JASSS, CMOT, Social Science Computer Review, Autonomous Agent and Multi-Agent Systems, Journal of Economic Dynamics and Control, Computational Economics, Computational Management Science). Special issues and extensive reviews of the literature have been published in influential and standard journals. At the same time, new international associations and societies were born, with an increasing number of members (i.e., ESSA in Europe, NAACSOS in North America, The Society for Computational Economics), many research centers and institutes have been successfully launched, many workshops, conferences and congresses are organized every year (with the first world congress on social simulation held in 2006 in Tokyo and the second one in Washington in 2008), and an open market of tools and simulation platforms (i.e., Swarm, Repast, Ascape, NetLogo), based on a vast community of developers and users, is steadily growing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Axelrod, R.: The Complexity of Cooperation. Agent-Based Models of Competition and Collaboration. Princeton University Press, Princeton (1997)

    Google Scholar 

  2. Axelrod, R.: Advancing the Art of Simulation in the Social Sciences. In: Rennard, J.P. (ed.) Handbook of Research on Nature Inspired Computing for Economy and Management. Idea Group, Hersey (2006)

    Google Scholar 

  3. Batty, M.: Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. MIT Press, London (2005)

    Google Scholar 

  4. Bedau, M.: Weak Emergence. Philosophical Perspectives 11, 375–399 (1997)

    Google Scholar 

  5. Boero, R., Squazzoni, F.: Does Empirical Embeddedness Matter? Methodological Issues on Agent-Based Models for Analytical Social Science. Journal of Artificial Societies and Social Simulation 8(4) (2005), http://jasss.soc.surrey.ac.uk/8/4/6.html

  6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  7. Coleman, J.: Foundations of Social Theory. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  8. de Marchi, S.: Computational and Mathematical Modeling in the Social Sciences. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  9. Epstein, J.M.: Generative Social Science. Studies in Agent-Based Computational Modeling. Princeton University Press, Princeton (2007)

    Google Scholar 

  10. Epstein, J.M., Axtell, R.: Growing Artificial Societies. Social Science from the Bottom-Up. MIT Press, Cambridge (1996)

    Google Scholar 

  11. Frank, U., Troitzsch, K.G.: Epistemological Perspectives on Simulation. Special Issue, Journal of Artificial Societies and Social Simulation 8(4) (2005), http://jasss.soc.surrey.ac.uk/8/4/7.html

  12. George, A.L., Bennett, A.: Case-Studies and Theory Development in the Social Sciences. MIT Press, Cambridge (2004)

    Google Scholar 

  13. Gilbert, N.: Varieties of Emergence. In: Sallach, D. (ed.) Social Agents: Ecology, Exchange, and Evolution. Agent 2002 Conference, University of Chicago and Argonne National Laboratory, pp. 41–56 (2002)

    Google Scholar 

  14. Gilbert, N.: When Does Social Simulation Need Cognitive Models? In: Sun, R. (ed.) Cognition and multi-agent interaction: From cognitive modeling to social simulation. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  15. Gilbert, N., Troitzsch, K.G.: Simulation for the Social Scientists, 2nd edn. Open University Press, Buckingham Philadelphia (2005)

    Google Scholar 

  16. Gilbert, N.: Agent-Based Models. Sage Publications, London (2008)

    Google Scholar 

  17. Gimblett, R.H.: Integrating Geographic Information Systems and Agent-based Modeling Techniques for Simulating Social and Ecological Processes. Oxford University Press, Oxford (2002)

    Google Scholar 

  18. Gintis, H.: Review of Handbook of Computational Economics, Volume II: Agent-Based Computational Economics by Tesfatsion L. and Judd K.J. Journal of Artificial Societies and Social Simulation 10(1) (2007), http://jasss.soc.surrey.ac.uk/10/1/reviews/gintis.html

  19. Goldthorpe, J.H.: On Sociology. Numbers, Narratives and the Integration of Research and Theory. Oxford University Press, Oxford (2000)

    Google Scholar 

  20. Hedström, P.: Dissecting the Social. On the Principles of Analytical Sociology. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  21. Hedström, P., Swedberg, R. (eds.): Social Mechanisms: An Analytical Approach to Social Theory. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  22. Kendrick, D.A., Mercado, P.R., Amman, H.M.: Computational Economics. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  23. Kim, J.: Emergence: Core Ideas and Issues. Synthese 151, 547–559 (2006)

    Article  Google Scholar 

  24. Janssen, M.A. (ed.): Complexity and Ecosystem Management: the Theory and Practice of Multi-Agent Systems. Edward Elgar Publishing, Cheltenham (2002)

    Google Scholar 

  25. Lomi, A., Larsen, E.R. (eds.): Dynamics of Organizations: Computational Modeling and Organization Theories. MIT Press, Cambridge (2000)

    Google Scholar 

  26. Moss, S., Edmonds, B.: Sociology and Simulation: Statistical and Qualitative Cross-Validation. American Journal of Sociology 110(4), 1095–1131 (2005)

    Article  Google Scholar 

  27. Nowak, M.A., Sigmund, K.: The Dynamics of Indirect Reciprocity. Journal of Theoretical Biology 194, 561–574 (1998)

    Article  Google Scholar 

  28. Nowak, M.A., Sigmund, K.: Evolution of Indirect Reciprocity. Nature 437, 1291–1298 (2005)

    Article  Google Scholar 

  29. Prietula, M., Carley, K., Gasser, L. (eds.): Simulating Organizations: Computational Models of Institutions and Groups. MIT Press, Cambridge (1998)

    Google Scholar 

  30. Pyka, A., Arhweiler, P.: Applied Evolutionary Economics and Social Simulation. Journal of Artificial Societies and Social Simulation 7(2) (2004), http://jasss.soc.surrey.ac.uk/7/2/6.html

  31. Saviotti, P.P. (ed.): Applied Evolutionary Economics: New Empirical Methods and Simulation Techniques. Edward Elgar Publishing, Cheltenham (2003)

    Google Scholar 

  32. Sawyer, R.K.: Social Emergence. Societies as Complex Systems. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  33. Shiflet, A.B., Shiflet, G.W.: Introduction to Computational Science: Modeling and Simulation for the Sciences. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  34. Squazzoni, F.: The Micro-Macro Link in Social Simulation. Sociologica, 1, 2 (2008), http://www.sociologica.mulino.it/journal/article/index/Article/Journal:ARTICLE:179

    Google Scholar 

  35. Suleiman, R., Troitzsch, K.G., Gilbert, N. (eds.): Tools and Techniques for Social Science Simulation. Springer, Heidelberg (2000)

    Google Scholar 

  36. Tesfatsion, L., Judd, K.L. (eds.): Handbook of Computational Economics, Volume II: Agent-Based Computational Economics. Elsevier/North-Holland, Amsterdam (2006)

    MATH  Google Scholar 

  37. van Elst, L., Dignum, V., Abecker, A. (eds.): AMKM 2003. LNCS, vol. 2926. Springer, Heidelberg (2004)

    Google Scholar 

  38. Volker, G., Railsback, S.F.: Individual-Based Modelling and Ecology. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  39. Windrum, P., Fagiolo, G., Moneta, A.: Empirical Validation of Agent-Based Models: Alternatives and Prospects. Journal of Artificial Societies and Social Simulation 8(4) (2007), http://jasss.soc.surrey.ac.uk/10/2/8.html

  40. Wooldridge, M.: An Introduction to Multi-Agent Systems. John Wiley and Sons Limited, Chichester (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frank, U., Squazzoni, F., Troitzsch, K.G. (2009). EPOS-Epistemological Perspectives on Simulation: An Introduction. In: Squazzoni, F. (eds) Epistemological Aspects of Computer Simulation in the Social Sciences. EPOS 2006. Lecture Notes in Computer Science(), vol 5466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01109-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01109-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01108-5

  • Online ISBN: 978-3-642-01109-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics