Abstract
The detection of anomalies and faults is a fundamental task for different fields, especially in real cases like LAN networks and the Internet. We present an experimental study of anomaly detection on a simulated Internet backbone network based on neural networks, particle swarms, and artificial immune systems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balachandran, S., Dasgupta, D., Nino, F., Garrett, D.: A framework for evolving multi-shaped detectors in negative selection. In: Proc. of IEEE Symposium on Foundations of Computational Intelligence, FOCI 2007, pp. 401–408 (2007)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: From natural to artificial systems. Oxford University Press, Oxford (1999)
Bouvry, P., Seredynsky, F.: Anomaly detection in TCP/IP networks using immune systems paradigm. Computer Comm. 30, 740–749 (2007)
Dasgupta, D., Ji, Z.: Real-valued negative selection algorithm with variable-sized detectors. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 287–298. Springer, Heidelberg (2004)
De Castro, N.L., von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Trans. on Evolutionary Computation 6(3), 239–251 (2002)
De Castro, N.L., von Zuben, F.J.: Immune and neural network models: Theoretical and empirical comparisons. Int. Journal on Computational Intelligent Applications 1(3), 239–257 (2001)
Dreyfus, G.: Neural networks, methodology and applications. Springer, Heidelberg (2005)
Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proc. of the IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA, pp. 202–212 (1994)
Freitas, A.A., Timmis, J.: Revisiting the Foundations of Artificial Immune Sustems for Data Mining. Trans. on Evolutionary Computation 11(4) (August 2007)
Gao, X.Z., Ovaska, S.J., Wang, X., Chow, M.Y.: A neural networks-based negative selection algorithm in fault diagnosis. Neural Computing & Applications 17, 91–98 (2007)
Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service attacks: Characterization and implications for cdns and web sites. In: Proc. of. WWW 2002, Hawaii (May 2002)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE International Conf. on Neural Networks, Perth, Australia, vol. 4, pp. 1942–1948 (1995)
Kim, J., Bentley, P.J., Aickelin, U., Greensmith, J., Tedesco, G., Twycross, J.: Immune system approaches to intrusion detection - a review. Natural Computing 6, 413–466 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Azzini, A., De Felice, M., Meloni, S., Tettamanzi, A.G.B. (2009). Soft Computing Techniques for Internet Backbone Traffic Anomaly Detection. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2009. Lecture Notes in Computer Science, vol 5484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01129-0_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-01129-0_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01128-3
Online ISBN: 978-3-642-01129-0
eBook Packages: Computer ScienceComputer Science (R0)