Skip to main content

Evolutionary Optimization of Number of Gates in PLA Circuits Implemented in VLSI Circuits

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5484))

Included in the following conference series:

  • 2060 Accesses

Abstract

In the paper a possibility of evolutionary number of gate optimization in PLA circuits implemented in VLSI technology is presented. Multi-layer chromosomes and specialized genetic operators cooperating to them are introduced to proposed evolutionary algorithm. Due to multi-layer chromosome structures whole gates are transferred in the logic array without disturb in their structures during crossover operation. Results obtained in optimization of gate number in selection boxes of DES cryptographic algorithm are compared to results obtained using SIS program with different optimization scripts such as: rugged, algebraic, and boolean. Proposed method allows to reduce the gates number in optimized circuit. Results obtained using described evolutionary method are better than using other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1992)

    Book  MATH  Google Scholar 

  2. Miller, J., Kalganova, T., Lipnitskaya, N., Job, D.: The Genetic Algorithm as a Discovery Engine: Strange Circuits and New Principles. In: Proceedings of the AISB Symposium on Creative Evolutionary Systems (CES 1999), Edinburgh, UK (1999)

    Google Scholar 

  3. Kalganova, T., Miller, J.: Evolving more efficient digital circuits by allowing circuit layout and multi-objective fitness. In: Proceedings of the First NASA/DoD Workshop on Evolvable Hardware, Los Alamitos, California, pp. 54–63 (1999)

    Google Scholar 

  4. Coello Coello, C.A., Christiansen, A.D., Aguirre, A.H.: Automated Design of Combinational Logic Circuits using Genetic Algorithms. In: Proc. of the Int. Conference on Artificial Neural Nets and Genetic Algorithms, pp. 335–338 (April 1997)

    Google Scholar 

  5. Coello Coello, C.A., Aguirre, A.H., Buckles, B.P.: Evolutionary Multiobjective Design of Combinational Logic Circuits. In: Proc. of the Second NASA/DoD Workshop on Evolvable Hardware, Los Alamitos, California, pp. 161–170 (July 2000)

    Google Scholar 

  6. Coello Coello, C.A., Christiansen, A.D., Aguirre, A.H.: Use of Evolutionary Techniques to Automate the Design of Combinational Circuits. International Journal of Smart Engineering System Design (2000)

    Google Scholar 

  7. Słowik, A., Białko, M.: Design and Optimization of Combinational Digital Circuits Using Modified Evolutionary Algorithm. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 468–473. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Slowik, A., Bialko, M.: Evolutionary Design and Optimization of Combinational Digital Circuits with Respect to Transistor Count. Bulletin of the Polish Academy of Sciences, Technical Sciences 54(4), 437–442 (2006)

    MATH  Google Scholar 

  9. De Micheli, G.: Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York (1994)

    Google Scholar 

  10. Saha, A.: Digital Principles and Logic Design. Jones & Bartlett Publishers (2007)

    Google Scholar 

  11. Schneier, B.: Applied Cryptography. Wiley, Chichester (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Slowik, A., Zurada, J.M. (2009). Evolutionary Optimization of Number of Gates in PLA Circuits Implemented in VLSI Circuits. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2009. Lecture Notes in Computer Science, vol 5484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01129-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01129-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01128-3

  • Online ISBN: 978-3-642-01129-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics