Skip to main content

Association Study between Gene Expression and Multiple Relevant Phenotypes with Cluster Analysis

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5483))

  • 1067 Accesses

Abstract

A complex disease is usually characterized by a few relevant disease phenotypes which are dictated by complex genetical factors through different biological pathways. These pathways are very likely to overlap and interact with one another leading to a more intricate network. Identification of genes that are associated with these phenotypes will help understand the mechanism of the disease development in a comprehensive manner. However, no analytical model has been reported to deal with multiple phenotypes simultaneously in gene-phenotype association study. Typically, a phenotype is inquired at one time. The conclusion is then made simply by fusing the results from individual analysis based on single phenotype. We believe that the certain information among phenotypes may be lost by not analyzing the phenotypes jointly. In current study, we proposed to investigate the associations between expressed genes and multiple phenotypes with a single statistics model. The relationship between gene expression level and phenotypes is described by a multiple linear regression equation. Each regression coefficient, representing gene-phenotype(s) association strength, is assumed to be sampled from a mixture of two normal distributions. The two normal components are used to model the behaviors of phenotype(s)-relevant genes and phenotype(s)-irrelevant genes, respectively. The conclusive classification of coefficients determines the association status between genes and phenotypes. The new method is demonstrated by simulated study as well as a real data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blalock, E.M., Geddes, J.W., Chen, K.C., Porter, N.M., Markesbery, W.R., Landfield, P.W.: Incipient alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proceedings of the National Academy of Sciences of the United States of America 101, 2173–2178 (2004)

    Article  Google Scholar 

  2. Lan, H., Chen, M., Flowers, J.B., Yandell, B.S., Stapleton, D.S., Mata, C.M., Mui, E.T., Flowers, M.T., Schueler, K.L., Manly, K.F., Williams, R.W., Kendziorski, C., Attie, A.D.: Combined expression trait correlations and expression quantitative trait locus mapping. Plos Genetics 2, e6 (2006)

    Article  Google Scholar 

  3. van Bakel, H., Strengman, E., Wijmenga, C., Holstege, F.C.P.: Gene expression profiling and phenotype analyses of s. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism. Physiol. Genomics 22, 356–367 (2005)

    Article  Google Scholar 

  4. Jia, Z., Xu, S.: Clustering expressed genes on the basis of their association with a quantitative phenotype. Genetical Research 86, 193–207 (2005)

    Article  Google Scholar 

  5. Qu, Y., Xu, S.H.: Quantitative trait associated microarray gene expression data analysis. Molecular Biology and Evolution 23, 1558–1573 (2006)

    Article  Google Scholar 

  6. Jia, Z., Tang, S., Mercola, D., Xu, S.: Detection of quantitative trait associated genes using cluster analysis. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 83–94. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Mitchell, T.J., Beauchamp, J.J.: Bayesian variable selection in linear regression. Journal of the American Statistical Association 83, 1023–1036 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. George, E.I., Mcculloch, R.E.: Variable selection via gibbs sampling. Journal of the American Statistical Association 88, 881–889 (1993)

    Article  Google Scholar 

  9. Raftery, A.E., Lewis, S.M.: One long run with diagnostics: Implementation strategies for markov chain monte carlo. Statistical Science 7, 493–497 (1992)

    Article  Google Scholar 

  10. Jia, Z., Xu, S.: Mapping quantitative trait loci for expression abundance. Genetics 176, 611–623 (2007)

    Article  Google Scholar 

  11. Ghazalpour, A., Doss, S., Zhang, B., Wang, S., Plaisier, C., Castellanos, R., Brozell, A., Schadt, E.E., Drake, T.A., Lusis, A.J., Horvath, S.: Integrating genetic and network analysis to characterize genes related to mouse weight. Plos Genetics 2, 1182–1192 (2006)

    Article  Google Scholar 

  12. Lander, E.S., Botstein, D.: Mapping mendelian factors underlying quantitative traits using rflp linkage maps. Genetics 121, 185–199 (1989)

    Google Scholar 

  13. Jiang, C.J., Zeng, Z.B.: Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica 101, 47–58 (1997)

    Article  Google Scholar 

  14. Xu, S.Z., Yi, N.J.: Mixed model analysis of quantitative trait loci. Proceedings of the National Academy of Sciences of the United States of America 97, 14542–14547 (2000)

    Article  Google Scholar 

  15. Broman, K.W., Speed, T.R.: A model selection approach for the identification of quantitative trait loci in experimental crosses. Journal of the Royal Statistical Society Series B-Statistical Methodology 64, 641–656 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yi, N.J., Xu, S.Z.: Mapping quantitative trait loci with epistatic effects. Genetical Research 79, 185–198 (2002)

    Article  Google Scholar 

  17. Yi, N.J., Xu, S.Z., Allison, D.B.: Bayesian model choice and search strategies for mapping interacting quantitative trait loci. Genetics 165, 867–883 (2003)

    Google Scholar 

  18. Rzhetsky, A., Wajngurt, D., Park, N., Zheng, T.: Probing genetic overlap among complex human phenotypes. Proceedings of the National Academy of Sciences of the United States of America 104, 11694–11699 (2007)

    Article  Google Scholar 

  19. Oti, M., Huynen, M.A., Brunner, H.G.: Phenome connections. Trends in Genetics 24, 103–106 (2008)

    Article  Google Scholar 

  20. Banerjee, S., Yandell, B.S., Yi, N.: Bayesian quantitative trait loci mapping for multiple traits. Genetics 179, 2275–2289 (2008)

    Article  Google Scholar 

  21. Schadt, E.E., Monks, S.A., Drake, T.A., Lusis, A.J., Che, N., Colinayo, V., Ruff, T.G., Milligan, S.B., Lamb, J.R., Cavet, G., Linsley, P.S., Mao, M., Stoughton, R.B., Friend, S.H.: Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003)

    Article  Google Scholar 

  22. Hubner, N., Wallace, C.A., Zimdahl, H., Petretto, E., Schulz, H., Maciver, F., Mueller, M., Hummel, O., Monti, J., Zidek, V., Musilova, A., Kren, V., Causton, H., Game, L., Born, G., Schmidt, S., Muller, A., Cook, S.A., Kurtz, T.W., Whittaker, J., Pravenec, M., Aitman, T.J.: Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics 37, 243–253 (2005)

    Article  Google Scholar 

  23. Jansen, R.C., Nap, J.P.: Genetical genomics: the added value from segregation. Trends in Genetics 17, 388–391 (2001)

    Article  Google Scholar 

  24. Kendziorski, C.M., Chen, M., Yuan, M., Lan, H., Attie, A.D.: Statistical methods for expression quantitative trait loci (eqtl) mapping. Biometrics 62(1), 19–27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jia, Z. et al. (2009). Association Study between Gene Expression and Multiple Relevant Phenotypes with Cluster Analysis. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2009. Lecture Notes in Computer Science, vol 5483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01184-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01184-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01183-2

  • Online ISBN: 978-3-642-01184-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics