Abstract
Classification of EEG (electroencephalographic) signals recorded during right and left motor imagery tasks is a technique for designing BCI (Brain-computer interfaces). In this paper, the regression tree is used to separate the right/left patterns that are extracted by ERD time courses. The regression tree is a statistical method to identify complex patterns without rigorous theoretical and distributional assumptions. The simulation result shows that the proposed BCI can provide satisfactory offline classification error rate and mutual information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-Computer Interface for Communication and Control. Journal of Clinical Neurophysiology 113, 767–791 (2002)
Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B.: A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces. Journal of Neural Engineering 4, R1–R13 (2007)
Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A Survey of Signal Processing Algorithms in Brain-Computer Interfaces based on Electrical Brain Signals. Journal of Neural Engineering 4(2), R32–R57 (2007)
Wolpaw, J.R.: Brain-Computer Interface Techology: A Review of the First International Meeting. IEEE Transactions on Rehabilitation Engineering 8(2), 164–173 (2000)
Pfurtscheller, G., Neuper, C.: Motor Imagery Activates Primary Sensorimotor Area in Humans. Neuroscience Letters 239, 65–68 (1997)
Pfurtscheller, G., da Silva, F.H.L.: Evented-Related EEG/MEG Synchronization and Desynchronization: Basic Principles. Clinical Neurophysiology 110, 1842–1857 (1999)
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Wadsworth (1984)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2005)
Safavian, S.R., Landgrebe, D.: A survey of Decision Tree Classifier Methodology. IEEE Transactions on Systems, Man, and Cybernetics 22(3), 660–674 (1991)
Schlogl, A., Keinrath, C., Scherer, R., Pfurtscheller, G.: Information Transfer of an EEG-based Brain-Computer Interface. In: Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, pp. 641–644 (2003)
Jia, W.Y.: Classification of Single Trial EEG during Motor Imagery based on ERD. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, pp. 5–8 (2004)
Duda, R.O., Hart, P.E., David, G.S.: Pattern Classification, 2nd edn. John Wiley & Sons Inc., Chichester (2001)
BCI competition II, http://ida.first.fraunhofer.de/projects/bci/competition_ii/
Martinez, W.L., Martinez, A.R.: Computational Statistics Handbook with MATLAB. Chapman & Hall/CRC, Boca Raton (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Wong, C., Wan, F. (2009). Classification of Imagery Movement Tasks for Brain-Computer Interfaces Using Regression Tree. In: Wang, H., Shen, Y., Huang, T., Zeng, Z. (eds) The Sixth International Symposium on Neural Networks (ISNN 2009). Advances in Intelligent and Soft Computing, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01216-7_48
Download citation
DOI: https://doi.org/10.1007/978-3-642-01216-7_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01215-0
Online ISBN: 978-3-642-01216-7
eBook Packages: EngineeringEngineering (R0)