Skip to main content

Theoretical Tools in Modeling Communication and Language Dynamics

  • Chapter
  • First Online:
Evolution of Communication and Language in Embodied Agents

Abstract

Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. In social phenomena, the basic constituents are not particles but humans and every individual interacts with a limited number of peers, usually negligible compared to the total number of people in the system. In spite of that, human societies are characterized by stunning global regularities that naturally call for a statistical physics approach to social behavior, i.e., the attempt to understand regularities at large scale as collective effects of the interaction among single individuals, considered as relatively simple entities. This is the paradigm of Complex Systems: an assembly of many interacting (and simple) units whose collective behavior is not trivially deducible from the knowledge of the rules governing their mutual interactions. In this chapter we review the main theoretical concepts and tools that physics can borrow to socially-motivated problems. Despite their apparent diversity, most research lines in social dynamics are actually closely connected from the point of view of both the methodologies employed and, more importantly, of the general phenomenological questions, e.g., what are the fundamental interaction mechanisms leading to the emergence of consensus on an issue, a shared culture, a common language or a collective motion?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiello, F. C. W., & Lu, L. (2001). A random graph model for power law graphs. Experimental Mathematics, 10, 53–66.

    MATH  MathSciNet  Google Scholar 

  • Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47–97.

    Article  MathSciNet  Google Scholar 

  • Axelrod, R. (1997). The dissemination of culture: a model with local convergence and global polarization. The Journal of Conflict Resolution, 41(2), 203–226.

    Article  Google Scholar 

  • Axelrod, R. (2006). Agent-based modeling as a bridge between disciplines. In L. Tesfatsion & K. L. Judd (Eds.), Handbook of computational economics (Vol. 2, pp. 1565–1584). Amsterdam: Elsevier.

    Google Scholar 

  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509.

    Article  MathSciNet  Google Scholar 

  • Barabási, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social, network of scientific collaborations. Physica A, 311(34), 590–614.

    Article  MATH  MathSciNet  Google Scholar 

  • Binney, J., Dowrick, N., Fisher, A., & Newman, M. (1992). The theory of critical phenomena: an introduction, to the renormalization group. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4–5), 175–308.

    Article  MathSciNet  Google Scholar 

  • Bray, A. (1994). Theory of phase-ordering kinetics. Advances Physics, 43(3), 357–459.

    Article  MathSciNet  Google Scholar 

  • Buchanan, M. (2007). The social atom. New York: Bloomsbury.

    Google Scholar 

  • Caldarelli, G. (2007). Scale-free networks. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Revues of Modern Physics.

    Google Scholar 

  • Catanzaro, M., Boguñá, M., & Pastor-Satorras, R. (2005). Generation of uncorrelated random scale-free networks. Physical Revue E, 71(2), 027103.

    Article  Google Scholar 

  • Conte, R., Hegselmann, R., & Terna, P. (1997). Simulating social phenomena. Berlin: Springer.

    MATH  Google Scholar 

  • Dorogovtsev, S., & Mendes, J. (2003). Evolution of networks: from biological nets to the Internet and WWW. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Ebel, H., Mielsch, L.-I., & Bornholdt, S. (2002). Scale-free topology of e-mail networks. Physical Revue E, 66(3), 035103.

    Article  Google Scholar 

  • Eckmann, J., Moses, E., & Sergi, D. (2004). Entropy of dialogues creates coherent structures in e-mail traffic. Proceedings of the National Academy of Sciences of the United States of America, 101(40), 14333–14337.

    Article  MATH  MathSciNet  Google Scholar 

  • Epstein, J., & Axtell, R. (1996) Growing artificial societies: social science from the bottom up. Washington: The Brookings Institution.

    Google Scholar 

  • Erdös, P., & Rényi, A. (1959). On random graphs I. Publications Mathematicae, 6, 290.

    MATH  Google Scholar 

  • Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 7, 17.

    Google Scholar 

  • Festinger, L., Schachter, S., & Back, K. (1950). Social pressures in informal groups: a study of human factors in housing. New York: Harper.

    Google Scholar 

  • Freeman, L. (2004). The development of social network analysis: a study in the sociology of science. Vancouver: BookSurge Publishing.

    Google Scholar 

  • Goh, K.-I., Kahng, B., & Kim, D. (2001). Universal behavior of load distribution in scale-free networks. Physical Revue Letters, 87(27), 278701.

    Article  Google Scholar 

  • Granovetter, M. (1973). The strength of weak ties. The American Journal of Sociology, 78(6), 1360–1380.

    Article  Google Scholar 

  • Granovetter, M. (1983). The strength of weak ties: a network theory revisited. Sociological Theory, 1, 201–233.

    Article  Google Scholar 

  • Haken, H. (1978). Synergetics; an introduction. Non-equilibrium phase transitions and self-organization in physics, chemistry and biology. Berlin: Springer.

    Google Scholar 

  • Helbing, D. (1993a). Boltzmann-like and Boltzmann–Fokker–Planck equations as a foundation of behavioral models. Physica A, 196(2), 546–573.

    Article  MATH  MathSciNet  Google Scholar 

  • Helbing, D. (1993b). Stochastic and Boltzmann-like models for behavioral changes, and their relation to game theory. Physica A, 193(2), 241–258.

    Article  MathSciNet  Google Scholar 

  • Helbing, D. (1994). A mathematical model for the behavior of individuals in a social field. Journal of Mathematical Sociology, 19(3), 189–219.

    Article  Google Scholar 

  • Hewitt, C. (1970). PLANNER: a language for manipulating models and proving theorems in a robot. dspace.mit.edu.

  • Holme, P. (2003). Network dynamics of ongoing social relationships. Europhysics Letters, 64(3), 427–433.

    Article  Google Scholar 

  • Holme, P., Edling, C. R., & Liljeros, F. (2004). Structure and time-evolution of an Internet dating community. Social Networks, 26, 155.

    Article  Google Scholar 

  • Huang, K. (1987). Statistical mechanics. New York: Wiley.

    MATH  Google Scholar 

  • Jin, E. M., Girvan, M., & Newman, M. E. J. (2001). Structure of growing social networks. Physical Revue E, 64(4), 046132.

    Article  Google Scholar 

  • Kubo, R., Toda, M., & Hashitsume, N. (1985). Statistical physics. Berlin: Springer.

    Google Scholar 

  • Landau, D., & Binder, K. (2005). A guide to Monte Carlo simulations in statistical physics. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Langton, C. (1996). Artificial life. Boston: Addison-Wesley Longman.

    Google Scholar 

  • Liljeros, F., Edling, C., L, A., Stanley, E., & Åberg, Y. (2001). The web of human sexual contacts. Nature, 411, 907–908.

    Article  Google Scholar 

  • Loreto, V., & Steels, L. (2007). Social dynamics: the emergence of language. Nature Physics, 3, 758–760.

    Article  Google Scholar 

  • Macy, M., & Willer, R. (2002). From factors to actors: Computational sociology and agent-based modeling. Annual Revue Sociology, 28, 143–166.

    Article  Google Scholar 

  • Maes, P. (1991). Designing autonomous agents: theory and practice from biology to engineering and back. Cambridge: MIT Press.

    Google Scholar 

  • Matsuda, H., Ogita, N., Sasaki, A., & Sato, K. (1992). Statistical mechanics of population. The lattice Lotka–Volterra model. Progress of Theoretical Physics, 88(6), 1035–1049.

    Article  Google Scholar 

  • McCarthy, J. (1959). Programs with common sense. In Proceedings of the Teddington conference on the mechanization of thought processes (pp. 75–91). London: Her Majesty’s Stationary Office.

    Google Scholar 

  • Meyer, J.-A., & Wilson, S. W. (Eds.) (1990). From animals to animats: proceedings of the first international conference on simulation of adaptive behavior. Cambridge: MIT Press.

    Google Scholar 

  • Milgram, S. (1967). The small world problem. Psychology Today, 1, 60–67.

    Google Scholar 

  • Minsky, M. (1961). Steps toward artificial intelligence. Proceedings of the Institute of Radio Engineers, 49, 8–30.

    MathSciNet  Google Scholar 

  • Molloy, M., & Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures & Algorithms, 6, 161–179.

    Article  MATH  MathSciNet  Google Scholar 

  • Molloy, M., & Reed, B. (1998). The size of the giant component of a random graph with a given degree sequence. Combinatorics, Probability & Computing, 7, 295.

    Article  MATH  MathSciNet  Google Scholar 

  • Moreno, J. (1934). Who shall survive?: a new approach to the problem of human interrelations. Nervous and mental disease monograph series (Vol. 58) Washington: Nervous and Mental Disease Publishing.

    Book  Google Scholar 

  • Neumann, J. V. (1966). Theory of self-reproducing automata. Champaign: University of Illinois Press.

    Google Scholar 

  • Newman, M. (2001a). Scientific collaboration networks. i. network construction and fundamental results. Physical Revue E, 64(1), 016131.

    Article  Google Scholar 

  • Newman, M. (2001b). Scientific collaboration networks. ii. shortest paths, weighted networks, and centrality. Physical Revue E, 64(1), 016132.

    Article  Google Scholar 

  • Newman, M. (2003a). The structure and function of complex networks. SIAM Review, 45(2), 167–256.

    Article  MATH  MathSciNet  Google Scholar 

  • Newman, M. E. J. (2003b). Mixing patterns in networks. Phys. Rev. E, 67(2), 026126.

    Article  MathSciNet  Google Scholar 

  • Newman, M. (2004). Coauthorship networks and, patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 101, 5200–5205.

    Article  Google Scholar 

  • Newman, M., & Park, J. (2003). Why social networks are different from other types of networks. Phys. Rev. E, 68, 036122.

    Article  Google Scholar 

  • Newman, M., & Watts, D. (1999). Scaling and percolation in the small-world network model. Phys. Rev. E, 60(6), 7332–7342.

    Article  Google Scholar 

  • Newman, M., Forrest, S., & Balthrop, J. (2002). Email networks and the spread of computer viruses. Phys. Rev. E, 66(3), 035101.

    Article  Google Scholar 

  • Onnela, J., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., & Barabási, A. L. (2007). Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences of the United States of America, 104(18), 7332–7336.

    Article  Google Scholar 

  • Palla, G., Barabási, A.-L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446(7136), 664–667.

    Article  Google Scholar 

  • Pastor-Satorras, R., & Vespignani, A. (2004). Evolution and structure of the Internet: a statistical physics approach. New York: Cambridge University Press.

    Book  Google Scholar 

  • Pastor-Satorras, R., Vázquez, A., & Vespignani, A. (2001). Dynamical and correlation properties of the Internet. Physical Revue Letters, 87(25), 258701.

    Article  Google Scholar 

  • Roehner, B. (2007). Driving forces in physical, biological and socio-economic phenomena. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2), 143–186.

    Article  Google Scholar 

  • Schweitzer, F. (2003). Brownian agents and active particles. Berlin: Springer.

    MATH  Google Scholar 

  • Scott, J. (2000). Social network analysis: a handbook. London: Sage.

    Google Scholar 

  • Steels, L. (1995). A self-organizing spatial vocabulary. Artificial Life, 2(3), 319–332.

    Article  Google Scholar 

  • Steels, L. (2000). Language as a complex adaptive system. In M. Schoenauer (Ed.), Lecture notes in computer science. Proceedings of PPSN VI. Berlin: Springer.

    Google Scholar 

  • Toral, R., & Tessone, C. J. (2007). Finite size effects in the dynamics of opinion formation. Computer Physics Communications, 2(2), 177–195.

    MathSciNet  Google Scholar 

  • Ulam, S. (1960). A collection of mathematical problems. New York: Interscience.

    MATH  Google Scholar 

  • Varela, F. J., & Bourgine, P. (Eds.) (1992). Toward a practice of autonomous systems: proceedings of the first European conference on artificial life. Cambridge: MIT Press.

    Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Watts, D., & Strogatz, S. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.

    Article  Google Scholar 

  • Weidlich, W. (2002). Sociodynamics: a systematic approach to mathematical modelling in social sciences. London: Taylor & Francis.

    Google Scholar 

  • Weiss, G. (Ed.) (1999). Multiagent systems: a modern approach to distributed artificial intelligence. Cambridge: MIT Press.

    Google Scholar 

  • Wittgenstein, L. (1953a). Philosophical investigations. Oxford: Basil Blackwell. (Translated by Anscombe, G.E.M.).

    Google Scholar 

  • Wittgenstein, L. (1953b) Philosophische Untersuchungen. Frankfurt am Main: Suhrkamp.

    Google Scholar 

  • Wooldridge, M. (2002). Introduction to multiagent systems. Chichester: Wiley.

    Google Scholar 

  • Wu, F. (1982). The Potts model. Revues of Modern Physics, 54(1), 235–268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Loreto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loreto, V. (2010). Theoretical Tools in Modeling Communication and Language Dynamics. In: Nolfi, S., Mirolli, M. (eds) Evolution of Communication and Language in Embodied Agents. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01250-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01250-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01249-5

  • Online ISBN: 978-3-642-01250-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics