Skip to main content

Evolutionary Conditions for the Emergence of Communication

  • Chapter
  • First Online:
Evolution of Communication and Language in Embodied Agents

Abstract

Communication plays a central role in the biology of most organisms, particularly social species. Although the neurophysiological processes of signal production and perception are well understood, the conditions conducive to the evolution of reliable systems of communication remain largely unknown. This is a particularly challenging problem because efficient communication requires tight coevolution between the signal emitted and the response elicited. We conducted experimental evolution with robots that could produce visual signals to provide information on food location. We found that communication readily evolves when colonies consist of genetically similar individuals and when selection acts at the colony level. We identified several distinct communication systems that differed in their efficiency. Once a given system of communication was well established, it constrained the evolution of more efficient communication systems. Under individual selection, the ability to produce visual signals resulted in the evolution of deceptive communication strategies in colonies of unrelated robots and a concomitant decrease in colony performance. This study generates predictions about the evolutionary conditions conducive to the emergence of communication and provides guidelines for designing artificial evolutionary systems displaying spontaneous communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bourke, A. F. G., & Franks, N. R. (1995). Social evolution in ants. Princeton: Princeton University Press.

    Google Scholar 

  • Dyer, F. C. (2002). Biology of the dance language. Annual Review of Entomology, 47, 917–949.

    Article  Google Scholar 

  • Fiegna, F., Yuen-Tsu, N. Y., Kadam, S. V., & Velicer, G. J. (2006). Evolution of an obligate social cheater to a superior cooperator. Nature, 441, 310–314.

    Article  Google Scholar 

  • Floreano, D., Mitri, S., Magnenat, S., & Keller, L. (2007). Evolutionary conditions for the emergence of communication in robots. Current Biology, 17, 514–519.

    Article  Google Scholar 

  • Fogel, D., Fogel, L., & Porto, V. (1990). Evolving neural networks. Biological Cybernetics, 63, 487–493.

    Article  Google Scholar 

  • Griffin, A. S., West, S. A., & Buckling, A. (2004). Cooperation and competition in pathogenic bacteria. Nature, 430, 1024–1027.

    Article  Google Scholar 

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour. Journal of Theoretical Biology, 7.

    Google Scholar 

  • Hamilton, W. D. (1996). Narrow roads of gene land, vol. 1: evolution of social behaviour. New York: Freeman.

    Google Scholar 

  • Jacob, F. (1981). Le jeu des possibles. Paris: Librairie Arthème Fayard.

    Google Scholar 

  • Johnstone, R. A., & Grafen, A. (1992). The continuous Sir Philip Sidney game: a simple model of biological signalling. Journal of Theoretical Biology, 156, 215–234.

    Article  Google Scholar 

  • Keller, L. (Ed.) (1999). Levels of selection in evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Maynard-Smith, J. (1991). Honest signaling—the Philip Sidney game. Animal Behavior, 42, 1034–1035.

    Article  Google Scholar 

  • Maynard-Smith, J., & Harper, D. (2003). Animal signals. London: Oxford University Press.

    Google Scholar 

  • Maynard-Smith, J., & Szathmàry, E. (1997). The major transitions in evolution. New York: Oxford University Press.

    Google Scholar 

  • Mirolli, M., & Parisi, D. (2008). How producer biases can favor the evolution of communication: an analysis of evolutionary dynamics. Adaptive Behavior, 16(1), 27–52.

    Article  Google Scholar 

  • Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L. M., & Dorigo, M. (2004). Swarm-Bot: a new distributed robotic concept. Autonomous Robots, 17(2–3), 193–221.

    Article  Google Scholar 

  • Nolfi, S., & Floreano, D. (2001). Evolutionary robotics. The biology, intelligence, and technology of self-organizing machines (2nd ed.). Cambridge: MIT Press.

    Google Scholar 

  • Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. Nature, 437, 1291–1298.

    Article  Google Scholar 

  • Searcy, W. A., & Nowicki, S. (2005). The evolution of animal communication: reliability and deception in signaling systems. Princeton: Princeton University Press.

    Google Scholar 

  • Trivers, R. L. (1971). The evolution of reciprocal altruism. Quarterly Review of Biology, 46, 35–57.

    Article  Google Scholar 

  • Waibel, M., Keller, L., & Floreano, D. (2009). Genetic team composition and level of selection in the evolution of cooperation. IEEE Transactions on Evolutionary Computation, 13(3), 648–660.

    Article  Google Scholar 

  • West, S. A., Pen, I., & Griffin, A. S. (2002). Cooperation and competition between relatives. Science, 296, 72–75.

    Article  Google Scholar 

  • Wilson, E. O. (1971). The insect societies. Cambridge: Belknap Press.

    Google Scholar 

  • Wilson, E. O. (1975). Sociobiology: the new synthesis. Cambridge: Belknap Press.

    Google Scholar 

  • Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. In D.F. Jones (Ed.), Proceedings of the VI international congress of genetics (pp. 356–366).

    Google Scholar 

  • Zahavi, A., & Zahavi, A. (1997). The handicap principle. A missing piece of Darwin’s puzzle. New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Mitri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitri, S., Floreano, D., Keller, L. (2010). Evolutionary Conditions for the Emergence of Communication. In: Nolfi, S., Mirolli, M. (eds) Evolution of Communication and Language in Embodied Agents. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01250-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01250-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01249-5

  • Online ISBN: 978-3-642-01250-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics