Skip to main content

Detecting Abnormal Events via Hierarchical Dirichlet Processes

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5476))

Included in the following conference series:

Abstract

Detecting abnormal event from video sequences is an important problem in computer vision and pattern recognition and a large number of algorithms have been devised to tackle this problem. Previous state-based approaches all suffer from the problem of deciding the appropriate number of states and it is often difficult to do so except using a trial-and-error approach, which may be infeasible in real-world applications. Yet in this paper, we have proposed a more accurate and flexible algorithm for abnormal event detection from video sequences. Our three-phase approach first builds a set of weak classifiers using Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM), and then proposes an ensemble learning algorithm to filter out abnormal events. In the final phase, we will derive abnormal activity models from the normal activity model to reduce the FP (False Positive) rate in an unsupervised manner. The main advantage of our algorithm over previous ones is to naturally capture the underlying feature in abnormal event detection via HDP-HMM. Experimental results on a real-world video sequence dataset have shown the effectiveness of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yao, Y., Wang, F., Wang, J., Zeng, D.D.: Rule+Exception Strategies for Security Information Analysis. IEEE Intelligent Systems 20(5), 52–57 (2005)

    Article  Google Scholar 

  2. Wang, J., Xu, C., Chng, E.S., Tian, Q.: Sports highlight detection from keyword sequences using HMM. In: Proc. IEEE ICME, Taiwan (June 2004)

    Google Scholar 

  3. Zhang, D., Gatica-Perez, D., Bengio, S., McCowan, I.: Semi- Supervised Adapted HMMs for Unusual Event Detection. In: CVPR, pp. 611–618 (2005)

    Google Scholar 

  4. MacKay, D.J.C.: Ensemble learning for hidden Markov models. Tech. Rep., Cavendish Lab, Univ. Cambridge, Cambridge, U.K (1997)

    Google Scholar 

  5. Gong, S., Xiang, T.: Recognition of group activities using a dynamic probabilistic network. In: Proc. IEEE ICCV, Nice (October 2003)

    Google Scholar 

  6. Lester, J., Choudhury, T., Kern, N., Borriello, G., Hannaford, B.: A Hybrid Discriminative/Generative Approach for Modeling Human Activities. In: Proc. 19th Int’l Joint Conf. Articial Intelligence (IJCAI 2005), July-August 2005, pp. 766–772 (2005)

    Google Scholar 

  7. Yin, J., Yang, Q., Pan, J.J.: Sensor-based Abnormal Human-Activity Detection IEEE Transactions on Knowledge and Data Engineering (IEEE TKDE). IEEE Computer Society Digital Library. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  8. Pruteanu-Malinici, I., Carin, L.: Infinite Hidden Markov Models for Unusual-Event Detection in Video. IEEE Transactions On Image Processing 17(5) (May 2008)

    Google Scholar 

  9. Bradley, A.P.: Shift-invariance in the discrete wavelet transform. Digit. Image Comput. Tech. Appl., pp. 29–38 (December 2003)

    Google Scholar 

  10. Hurri, J., Hyvarinen, A., Karhunen, J., Oja, E.: Image feature extraction using independent component analysis. In: The IEEE Nordic Conf. Signal Processing (1996)

    Google Scholar 

  11. Kohonen, T.: Emergence of invariant-feature detectors in the adaptive- subspace self-organizing map. Biol. Cybern. 75(4), 281–291 (1996)

    Article  MATH  Google Scholar 

  12. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

    Article  Google Scholar 

  13. Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance. IJCV 63(2), 153–161 (2005)

    Article  Google Scholar 

  14. Ribeiro, P.C., Santos-victor, J.: Human activity recognition from video: modeling, feature selection and classification architecture. In: International Workshop on Human Activity Recognition and Modeling (HAREM) (2005)

    Google Scholar 

  15. Kira, K., Rendell, L.: A practical approach to feature selection. In: Proc. 9th Int. Workshop on Machine Learning, pp. 249–256 (1992)

    Google Scholar 

  16. Robnik-Sikonja, M., Kononenko, I.: Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning Journal 53, 23–69 (2003)

    Article  MATH  Google Scholar 

  17. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical dirichlet processes. J. Amer. Statist. Assoc. 101, 1566–1581 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gael, J.V., Saatci, Y., Teh, Y.W., Ghahramani, Z.: Beam Sampling for the Infinite Hidden Markov Model. In: ICML (2008)

    Google Scholar 

  19. Elkan, C.: The Foundations of Cost-Sensitive Learning. In: Proc. 17th Int’l Joint Conf. Articial Intelligence (IJCAI 2001), pp. 973–978 (August 2001)

    Google Scholar 

  20. Ling, C.X., Huang, J., Zhang, H.: AUC: A Statistically Consistent and More Discriminating Measure than Accuracy. In: Proc. 18th Int’l Joint Conf. Artificial Intelligence (IJCAI 2003), pp. 519–526 (August 2003)

    Google Scholar 

  21. Liu, X.-Y., Zhou, Z.-H.: The influence of class imbalance on cost-sensitive learning: An empirical study. In: Perner, P. (ed.) ICDM 2006. LNCS, vol. 4065, pp. 970–974. Springer, Heidelberg (2006)

    Google Scholar 

  22. Yilmaz, A.: Object Tracking by Asymmetric Kernel Mean Shift with Automatic Scale and Orientation Selection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007) (2007)

    Google Scholar 

  23. MacKay, D.J.C.: Ensemble learning for hidden Markov models. Tech. Rep., Cavendish Lab, Univ. Cambridge, Cambridge, U.K (1997)

    Google Scholar 

  24. Hongeng, S., Nevatia, R., Bremond, F.: Video-based event recognition: activity representation and probabilistic recognition methods. Computer Vision and Image Understanding 96, 129–162 (2004)

    Article  Google Scholar 

  25. Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  26. Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden Markov model. In: Advances in Neural Information Processing Systems, pp. 577–584. MIT Press, Cambridge (2002)

    Google Scholar 

  27. Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. Computer Vision and Pattern Recognition (2001)

    Google Scholar 

  28. CAVIAR PROJECT, http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

  29. Chan, M.T., Hoogs, A., Schmiederer, J., Perterson, M.: Detecting rare events in video using semantic primitives with HMM. In: Proc. ICPR (August 2004)

    Google Scholar 

  30. Runkle, P., Bharadwaj, P., Carin, L.: Hidden Markov model for multi-aspect target classification. IEEE Trans. Signal Process. 47(7), 2035–2040 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, XX., Liu, H., Gao, Y., Hu, D.H. (2009). Detecting Abnormal Events via Hierarchical Dirichlet Processes. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, TB. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2009. Lecture Notes in Computer Science(), vol 5476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01307-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01307-2_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01306-5

  • Online ISBN: 978-3-642-01307-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics