Skip to main content

On Optimal Rule Mining: A Framework and a Necessary and Sufficient Condition of Antimonotonicity

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5476))

Included in the following conference series:

Abstract

Many studies have shown the limits of support/confidence framework used in Apriori-like algorithms to mine association rules. There are a lot of efficient implementations based on the antimonotony property of the support but candidate set generation is still costly. In addition many rules are uninteresting or redundant and one can miss interesting rules like nuggets. One solution is to get rid of frequent itemset mining and to focus as soon as possible on interesting rules. For that purpose algorithmic properties were first studied, especially for the confidence. They allow all confidence rules to be found without a preliminary support pruning. More recently, in the case of class association rules, the concept of optimal rules gave a pruning strategy compatible with more measures. However, all these properties have been demonstrated for a limited number of interestingness measures. We present a new formal framework which allows us to make the link between analytic and algorithmic properties of the measures. We apply this framework to optimal rules, and we demonstrate a necessary and sufficient condition of existence for this pruning strategy, which can be applied to any measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imieliski, T., Swami, A.: Mining association rules between sets of items in large databases. In: ICMD, pp. 207–216 (1993)

    Google Scholar 

  2. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: KDD, pp. 80–86 (1998)

    Google Scholar 

  3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 478–499 (1994)

    Google Scholar 

  4. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ICMD, pp. 1–12 (2000)

    Google Scholar 

  5. Goethals, B.: Frequent set mining. In: The Data Mining and Knowledge Discovery Handbook, pp. 377–397 (2005)

    Google Scholar 

  6. Cohen, E., Datar, M., Fujiwara, S., Gionis, A., Indyk, P., Motwani, R., Ullman, J.D., Yang, C.: Finding interesting associations without support pruning. In: TKDE, pp. 64–78 (2001)

    Google Scholar 

  7. Koh, Y.S.: Mining non-coincidental rules without a user defined support threshold. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS, vol. 5012, pp. 910–915. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right objective measure for association analysis. In: IS, pp. 293–313 (2004)

    Google Scholar 

  9. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM Computing Surveys 38(3, Article 9) (2006)

    Google Scholar 

  10. Lenca, P., Meyer, P., Vaillant, B., Lallich, S.: On selecting interestingness measures for association rules: user oriented description and multiple criteria decision aid. In: EJOR, pp. 610–626 (2008)

    Google Scholar 

  11. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on multiple class-association rules. In: ICDM, pp. 369–376 (2001)

    Google Scholar 

  12. Pei, J., Han, J.: Can we push more constraints into frequent pattern mining? In: KDD, pp. 350–354 (2000)

    Google Scholar 

  13. Bayardo Jr., R.J., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large, dense databases. In: ICDE, pp. 188–197 (1999)

    Google Scholar 

  14. Xiong, H., Tan, P.N., Kumar, V.: Mining strong affinity association patterns in data sets with skewed support distribution. In: ICDM, pp. 387–394 (2003)

    Google Scholar 

  15. Omiecinski, E.: Alternative interest measures for mining associations in databases. In: TKDE, pp. 57–69 (2003)

    Google Scholar 

  16. Wang, K., He, Y., Cheung, D.W.: Mining confident rules without support requirement. In: IKM, pp. 89–96 (2001)

    Google Scholar 

  17. Zimmermann, A., De Raedt, L.: CorClass: Correlated association rule mining for classification. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS, vol. 3245, pp. 60–72. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Morishita, S., Sese, J.: Transversing itemset lattices with statistical metric pruning. In: PODS, pp. 226–236 (2000)

    Google Scholar 

  19. Bonchi, F., Lucchese, C.: Pushing tougher constraints in frequent pattern mining. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS, vol. 3518, pp. 114–124. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Li, J.: On optimal rule discovery. In: TKDE, pp. 460–471 (2006)

    Google Scholar 

  21. Hébert, C., Crémilleux, B.: A unified view of objective interestingness measures. In: Perner, P. (ed.) MLDM 2007. LNCS, vol. 4571, pp. 533–547. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Lallich, S., Vaillant, B., Lenca, P.: Parametrised measures for the evaluation of association rule interestingness. In: AMSDA, pp. 220–229 (2005)

    Google Scholar 

  23. Lallich, S., Vaillant, B., Lenca, P.: A probabilistic framework towards the parameterization of association rule interestingness measures. In: MCAP, pp. 447–463 (2007)

    Google Scholar 

  24. Li, J., Chee Fu, A.W., He, H., Chen, J., Jin, H., McAullay, D., Williams, G., Sparks, R., Kelman, C.: Mining risk patterns in medical data. In: KDD, pp. 770–775 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le Bras, Y., Lenca, P., Lallich, S. (2009). On Optimal Rule Mining: A Framework and a Necessary and Sufficient Condition of Antimonotonicity. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, TB. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2009. Lecture Notes in Computer Science(), vol 5476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01307-2_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01307-2_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01306-5

  • Online ISBN: 978-3-642-01307-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics