Skip to main content

Vectorizing Instance-Based Integration Processes

  • Conference paper
Enterprise Information Systems (ICEIS 2009)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 24))

Included in the following conference series:

Abstract

The inefficiency of integration processes—as an abstraction of workflow-based integration tasks—is often reasoned by low resource utilization and significant waiting times for external systems. Due to the increasing use of integration processes within IT infrastructures, the throughput optimization has high influence on the overall performance of such an infrastructure. In the area of computational engineering, low resource utilization is addressed with vectorization techniques. In this paper, we introduce the concept of vectorization in the context of integration processes in order to achieve a higher degree of parallelism. Here, transactional behavior and serialized execution must be ensured.In conclusion of our evaluation, the message throughput can be significantly increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boehm, M., Habich, D., Lehner, W., Wloka, U.: An advanced transaction model for recovery processing of integration processes. In: ADBIS (2008)

    Google Scholar 

  2. Boehm, M., Habich, D., Lehner, W., Wloka, U.: Dipbench toolsuite: A framework for benchmarking integration systems. In: ICDE (2008)

    Google Scholar 

  3. Dalvi, N.N., Sanghai, S.K., Roy, P., Sudarshan, S.: Pipelining in multi-query optimization. In: PODS (2001)

    Google Scholar 

  4. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms for multi query optimization. In: SIGMOD (2000)

    Google Scholar 

  5. Johnson, R., Hardavellas, N., Pandis, I., Mancheril, N., Harizopoulos, S., Sabirli, K., Ailamaki, A., Falsafi, B.: To share or not to share? In: VLDB (2007)

    Google Scholar 

  6. Harizopoulos, S., Ailamaki, A.: A case for staged database systems. In: CIDR (2003)

    Google Scholar 

  7. Harizopoulos, S., Shkapenyuk, V., Ailamaki, A.: Qpipe: A simultaneously pipelined relational query engine. In: SIGMOD (2005)

    Google Scholar 

  8. Ives, Z.G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An adaptive query execution system for data integration. In: SIGMOD (1999)

    Google Scholar 

  9. Lee, R., Zhou, M., Liao, H.: Request window: an approach to improve throughput of rdbms-based data integration system by utilizing data sharing across concurrent distributed queries. In: VLDB (2007)

    Google Scholar 

  10. Schmidt, S., Berthold, H., Lehner, W.: Qstream: Deterministic querying of data streams. In: VLDB (2004)

    Google Scholar 

  11. Boehm, A., Marth, E., Kanne, C.C.: The demaq system: declarative development of distributed applications. In: SIGMOD (2008)

    Google Scholar 

  12. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The design of the borealis stream processing engine. In: CIDR (2005)

    Google Scholar 

  13. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over web services. In: VLDB (2006)

    Google Scholar 

  14. Gounaris, A., Yfoulis, C., Sakellariou, R., Dikaiakos, M.D.: Robust runtime optimization of data transfer in queries over web services. In: ICDE (2008)

    Google Scholar 

  15. Lemos, M., Casanova, M.A., Furtado, A.L.: Process pipeline scheduling. J. Syst. Softw. 81(3) (2008)

    Google Scholar 

  16. Biornstad, B., Pautasso, C., Alonso, G.: Control the flow: How to safely compose streaming services into business processes. In: IEEE SCC (2006)

    Google Scholar 

  17. Simitsis, A., Vassiliadis, P., Sellis, T.: Optimizing etl processes in data warehouses. In: ICDE (2005)

    Google Scholar 

  18. Hull, R., Llirbat, F., Kumar, B., Zhou, G., Dong, G., Su, J.: Optimization techniques for data-intensive decision flows. In: ICDE (2000)

    Google Scholar 

  19. Li, H., Zhan, D.: Workflow timed critical path optimization. Nature and Science 3(2) (2005)

    Google Scholar 

  20. Vrhovnik, M., Schwarz, H., Suhre, O., Mitschang, B., Markl, V., Maier, A., Kraft, T.: An approach to optimize data processing in business processes. In: VLDB (2007)

    Google Scholar 

  21. Boehm, M., Habich, D., Lehner, W., Wloka, U.: Workload-based optimization of integration processes. In: CIKM (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boehm, M., Habich, D., Preissler, S., Lehner, W., Wloka, U. (2009). Vectorizing Instance-Based Integration Processes. In: Filipe, J., Cordeiro, J. (eds) Enterprise Information Systems. ICEIS 2009. Lecture Notes in Business Information Processing, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01347-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01347-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01346-1

  • Online ISBN: 978-3-642-01347-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics