Abstract
Anonymity is one of the main concerns in group-oriented cryptography. However, most efforts, for instance, group signatures and ring signatures, are only made to provide anonymity on the sender’s side. There are merely few works done to ensure anonymity in a cryptographic sense on the recipient’s side in group-oriented communications. This paper formalizes the notion of group decryption (GD). It can be viewed as an analog of group signatures in the context of public key encryptions. In this notion, a sender can encrypt a committed message intended to any member of a group, managed by a group manager, while the recipient of the ciphertext remains anonymous. The sender can convince a verifier about this fact without leaking the plaintext or the identity of the recipient. If required, the group manager can verifiably open the identity of the recipient. We propose an efficient GD scheme that is proven secure in the random oracle model. The overhead in both computation and communication is independent of the group size. A full ciphertext is about 0.2K bytes in a typical implementation and the scheme is practical.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID Tags via Insubvertible Encryption. In: Meadows, C. (ed.) ACM CCS 2005, pp. 92–101. ACM Press, New York (2005)
Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical Group Signatures without Random Oracles (2005), http://eprint.iacr.org/
Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001)
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)
Bellare, M., Rogaway, P.: Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols. In: Ganesan, R., Sandhu, R. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)
Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)
Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)
Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)
Galbraith, S.-D., Paterson, K.G., Smart, N.-P.: Pairings for Cryptographers (2006), http://eprint.iacr.org/
Kiayias, A., Tsiounis, Y., Yung, M.: Group encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007)
Liu, J.K., Tsang, P.P., Wong, D.S.: Efficient verifiable ring encryption for ad hoc groups. In: Molva, R., Tsudik, G., Westhoff, D. (eds.) ESAS 2005. LNCS, vol. 3813, pp. 1–13. Springer, Heidelberg (2005)
Liu, J.K., Tsang, P.P., Wong, D.S., Zhu, R.W.: Universal custodian-hiding verifiable encryption for discrete logarithms. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 389–409. Springer, Heidelberg (2006)
Liu, J.K., Wei, V.K., Wong, D.S.: Custodian-hiding verifiable encryption. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 51–64. Springer, Heidelberg (2005)
Lysyanskaya, A., Rivest, R.-L., Sahai, A., Wolf, S.: Pseudonym Systems. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)
Qin, B., Wu, Q., Susilo, W., Mu, Y.: Group Decryption (The full version) (2006), http://eprint.iacr.org/
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)
Verheul, E.R.: Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 195–210. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qin, B., Wu, Q., Susilo, W., Mu, Y. (2009). Publicly Verifiable Privacy-Preserving Group Decryption. In: Yung, M., Liu, P., Lin, D. (eds) Information Security and Cryptology. Inscrypt 2008. Lecture Notes in Computer Science, vol 5487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01440-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-01440-6_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01439-0
Online ISBN: 978-3-642-01440-6
eBook Packages: Computer ScienceComputer Science (R0)