Skip to main content

A Hybrid MPSO-BP-RBFN Model for Reservoir Lateral Prediction

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5551))

Included in the following conference series:

  • 1147 Accesses

Abstract

The degree of success of many oil and gas drilling, completion, and production activities depends on the accuracy of the models used in the reservoir lateral prediction and description. In this paper, a hybrid MPSO-BP-RBFN model for predicting reservoir from seismic attributes is proposed. The model in which every particle consists of binary and real parts is able to simultaneously search for optimal network topology (the number of hidden nodes) and parameters, as it proceeds. The model has been used to reservoir lateral prediction of a reservoir zone and proved the model’s applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, G., Dong, M., Yuan, S., et al.: Multivariate Geologic Statistical Method for Horizontal Reservoir Prediction. Oil Geophysical Prospecting 34(5), 555–559 (1999)

    Google Scholar 

  2. Gao, J., Wang, J., Yu, M., et al.: Seismic Attributes Optimization and Application in Reservoir Prediction. Applied Geophysics 3(4), 243–247 (2006)

    Article  Google Scholar 

  3. Sullivan, A., Christie, M.: Simulation Error Models for Improved Reservoir Prediction. Reliability Engineering and System Safety 91, 1382–1389 (2006)

    Article  Google Scholar 

  4. Herrera, V.M., Russell, B., Flores, A.: Neural Networks in Reservoir Characterization. The Leading Edge 4, 402–411 (2006)

    Article  Google Scholar 

  5. West, B.P., May, S.R., Eestwood, J., et al.: Interactive Seismic Facies Classification Using Textural Attributes and Neural Networks. The Leading Edge 10, 1042–1049 (2002)

    Article  Google Scholar 

  6. Du, Y., Weiss, W.W., Xu, J., et al.: Obtain an Optimum Artificial Neural Network Model for Reservoir Studies. Society of Petroleum Engineers 84, 23–24 (2002)

    Google Scholar 

  7. Wang, Z.: The Predication of Petrochemical Pr-Operties Based on the Artificial Neural Networks with an Early-Res-Tart Algorithm. Computing Techniques for Geophysical and Geochemical Exploration 3, 249–252 (2007)

    Google Scholar 

  8. Shahsavand, A., Ahmadpour, A.: Application of Optimal RBF Neural Networks for Optimization and Characterization of Porous Materials. Computers & Chemical Engineering 29, 2134–2143 (2005)

    Article  Google Scholar 

  9. Mu, T., Asoke, K.: RBF Neural Networks for Solving the Inverse Problem of Backscattering Spectra. Neural Computing & Applications, doi:10.1007/s00521-007-0138-2

    Google Scholar 

  10. Zhang, A., Zhang, L.: RBF Neural Networks for the Prediction of Building Interference Effects. Computers and Structures 82, 2333–2339 (2004)

    Article  Google Scholar 

  11. Ram, D., Srivastava, L., Pandit, M., et al.: Corrective Action Planning Using RBF Neural Network. Applied soft computing 7, 1055–1063 (2007)

    Article  Google Scholar 

  12. Darken, C., Moody, J.: Fast Adaptive K-means Clustering: Some Empirical Results. In: IEEE INNS International Joint Conference on Neural Networks, pp. 233–238. IEEE Press, New York (1990)

    Google Scholar 

  13. Chinrungrueng, C., Sequin, C.H.: Optimal Adaptive K-Means Algorithm with Dynamic Adjustment of Learning Rate. IEEE Transactions on Neural Networks 6(3), 157–168 (1995)

    Article  Google Scholar 

  14. Chen, S., Cowan, F.N., Grant, P.M.: Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Trans Neural Networks 2(3), 302–309 (1991)

    Article  Google Scholar 

  15. Sherstinsky, A., Picard, R.W.: On the Efficiency of The Orthogonal Least Squares Training Method for Radial Basis Function Networks. IEEE Trans. Neural Networks 7(1), 195–200 (1996)

    Article  Google Scholar 

  16. Huang, G., Saratchandran, P., Sundararajan, N.: An Efficient Sequential Learning Algorithm for Growing and Pruning RBF (GAP-RBF) Networks. IEEE Trans. Syst. Man Cybern. Part B 34, 2284–2292 (2004)

    Article  Google Scholar 

  17. Eberhart, R., Kennedy, J.: Particle Swarm Optimization. In: Int: IEEE Conf. Neural Networks, vol. IV, pp. 1942–1947. IEEE Press, New York (1995)

    Google Scholar 

  18. Clerc, M.: The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. In: Int: Proceeding Congress on Evolutionary Computation, Washington, DC, pp. 1951–1957 (1999)

    Google Scholar 

  19. Shi, Y.H., Eberhart, R.: A Modified Particle Swarm Optimizer. In: Int: IEEE Conf. Evol. Comput., pp. 69–73. IEEE Press, New York (1998)

    Google Scholar 

  20. Kennedy, J., Eberhart, R.: A Discrete Binary Version of the Particle Swarm Algorithm. In: Proceedings of the World Multiconference on Systemic, Cybernetics and Informatics, NJ, Piscataway, pp. 4104–4109 (1997)

    Google Scholar 

  21. Gaing, Z.L.: A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System. IEEE Transactions on Energy Conver 19, 384–391 (2004)

    Article  Google Scholar 

  22. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  23. Yu, S.W., Zhu, K.J., Diao, F.Q.: A Dynamic all Parameters Adaptive BP Neural Networks Model and its Application on Oil Reservoir Prediction. Applied Mathematics and Computation 195(1), 66–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, S., Zhu, K., Guo, X., Wang, J. (2009). A Hybrid MPSO-BP-RBFN Model for Reservoir Lateral Prediction. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01507-6_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01507-6_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01506-9

  • Online ISBN: 978-3-642-01507-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics