Skip to main content

Integrated Radial Basis Function Networks with Adaptive Residual Subsampling Training Method for Approximation and Solving PDEs

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5552))

Included in the following conference series:

  • 1339 Accesses

Abstract

This paper proposes a method for approximation and solving PDEs, based on integrated radial basis function networks (IRBFNs) with adaptive residual subsampling training algorithm. The Multiquadratic function is chosen as the transfer function of the neurons. The effectiveness of the method is demonstrated in numerical examples by approximating several functions and solving Burgers’ equation. The result of numerical experiments shows that the IRBFNs with the proposed adaptive procedure requires less neurons to attain the accuracy than direct radial basis function (DRBF) network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Larsson, S., Thomée, V.: Partial Differential Equations With Numerical Methods. Springer, Berlin (2003)

    MATH  Google Scholar 

  2. Park, J., Sandberg, I.: Universal Approximation Using Radial-basis Function Networks. Neural Comput. 3, 246–257 (1991)

    Article  Google Scholar 

  3. Kansa, E.: Multiquadrics - A Scattered Data Approximation Scheme with Applications to Computational Fluid-dynamics-I. Surface Approximations and Partial Derivative Estimates. Comp. Math. Appl. 19, 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kansa, E.: Multiquadrics - A Scattered Data Approximation Scheme with Applications to Computational Fluid-dynamics-II. Solutions to Parabolic, Hyperbolic and Elliptic Partial Differential Equations. Comp. Math. Appl. 19, 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Larsson, E., Fornberg, B.: A Numerical Study of Some Radial Basis Function Based Solution Methods for Elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fasshauer, G.: Solving Partial Differential Equation by Collocation with Radial Basis Functions. In: Surface Fitting and Miltiresolution Methods, pp. 131–138. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  7. Dag, I., Dereili, Y.: Numerical Solutions of KDV Equation Using Radial Basis Functions. Appl. Math. Model 32, 535–546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mai-Duy, N., Tran-Cong, T.: Approximation of Function and Its Derivatives Using Radial Basis Function Networks. Appl. Math. Model. 27, 197–220 (2003)

    Article  MATH  Google Scholar 

  9. Mai-Duy, N., Tran-Cong, T.: Numerical Solution of Differential Equations Using Multiquadric Radial Basis Function Networks. Neural Netw. 14, 185–199 (2001)

    Article  MATH  Google Scholar 

  10. Sarra, S.: Integrated Multiquadric Radial Basis Function Approximation Methods. Comput. Math. Appl. 51, 1283–1296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shu, C., Wu, L.: Integrated Radial Basis Functions-based Differential Quadrature Method and Its Performace. Int. J. Numer. Methods Fluids 53, 969–984 (2007)

    Article  MATH  Google Scholar 

  12. Fonberg, B., Driscoll, T., Wright, G., Charles, R.: Observations on the Behavior of Radial Basis Function Approximations Near Boundaries. Comput. Math. Appl. 43, 473–490 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gonzalez, J., Rojas, I., Ortega, J., et al.: Multiobjective Evolutionary Optimization of the Size, Shape, and Position Parameter of Radial Basis Function Network for Function Approximation. IEEE T. Neural Netw. 14, 1478–1495 (2003)

    Article  Google Scholar 

  14. Sarra, S.: Adaptive Radial Basis Function Methods for Time Dependent Partial Differential Equations. Appl. Numer. Math. 54, 79–94 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Driscoll, T., Heryudono, A.: Adaptive Residual Subsampling Methods for Radial Basis Function Approximation and Collocation Problems. Comput. Math. Appl. 53, 927–939 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, H., Kong, L. (2009). Integrated Radial Basis Function Networks with Adaptive Residual Subsampling Training Method for Approximation and Solving PDEs. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_112

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01510-6_112

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01509-0

  • Online ISBN: 978-3-642-01510-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics