Abstract
The fundamental problem of selecting the order and identifying the time varying parameters of an autoregressive model (AR) concerns many important fields. The Vapnik-Chervonenkis (VC) generalization bound provides a mathematical framework for the practical models selection from finite and noisy data sets of time series dataset. In this paper, based on the VC generalization bound for Support Vector Machine (SVM), we introduce a new method of identifying the time varying parameters of an AR model, then and two SVM-based time series prediction models are formulated. Both numerical experiments and theoretical analysis show that the proposed models are feasible and effective.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vapnik, V.: The Nature of Statiscal Learning Theory. Springer, New York (1995)
Cherkassky, V., Shao, X., Mulier, F., Vapnik, V.: Model Complexity Control for Regression using VC Generalization Bounds. IEEE Transaction on Neural Networks 10(5), 1075–1089 (1999)
Smola, A.J., Schölkoph, B.: A Tutorial on Support Vector Regression. In: Proceedings of the 7th International Conference on Artificial Neural Networks, London, pp. 999–1004. Springer, Heidelberg (1997)
Tikka, J., Lendasse, A., Hollmén, J.: Analysis of Fast Input Selection: Application in Time Series Prediction. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 161–170. Springer, Heidelberg (2006)
Cherkassky, V.: Model Complexity Control and Statistical Learning Theory. Natural computing 1, 109–133 (2002)
Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden Day, San Francisco (1970)
http://www.bundesbank.de/statistik/statistik_zeitreihen.en.php?open=wertpapiermaerkte
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, L., Wang, L., Xu, Y., Sun, Q. (2009). Time Series Prediction Based on Generalization Bounds for Support Vector Machine. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-01510-6_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01509-0
Online ISBN: 978-3-642-01510-6
eBook Packages: Computer ScienceComputer Science (R0)