Abstract
Although many independent component analysis (ICA) based algorithms were proposed to tackle the classification problem of microarray data, a problem is usually ignored that which and how many independent components can be used to best describe the property of the microarray data. In this paper, we proposed a GA approach for IC feature selection to increase the classification accuracy of two different ICA based models: penalized independent component regression (P-ICR) and ICA based Support Vector Machine (SVM). The corresponding experimental results are listed to show that the IC selection method can further improve the classification accuracy of the ICA based algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hori, G., Inoue, M., Nishimura, S., Nakahara, H.: Blind gene classification based on ICA of microarray data. In: Proc. 3rd Int. Workshop on Independent Component Analysis and Blind Signal Separation (ICA 2001), pp. 332–336 (2001)
Liebermeister, W.: Linear modes of gene expression determined by independent component analysis. Bioinformatics 18, 51–60 (2002)
Feri, F.J., Pudil, P., Hatef, M., Kittler, J.: Comparative study of techniques for large-scale feature selection. In: Proc. Int. Conf. on Pattern Recogninat, pp. 403–413 (1994)
Huang, D.S., Zheng, C.H.: Independent component analysis-based penalized discriminant method for tumor classification using gene expression data. Bioinformatics 22, 1855–1862 (2006)
Liu, J.J., Cutler, G., Li, W.X., Pan, Z., Peng, S.H., Hoey, T., Chen, L.B., Ling, X.F.B.: Multiclass cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics 21(11), 2691–2697 (2005)
Ooi, C.H., Tan, P.: Genetic algorithms applied to multi-class prediction for the analysis of gene expression data. Bioinformatics 19(1), 37–44 (2003)
Zhang, X.W., Yap, Y.L., Wei, D., Chen, F., Danchin, A.: Molecular Diagnosis of Human Cancer Type by Gene Expression Profiles and Independent Component Analysis. European Journal of Human Genetics 13(12), 1303–1311 (2005)
Chiappetta, P., Roubaud, M.C., Torresani, B.: Blind source separation and the analysis of microarray data. Journal of Computational Biology 11, 1090–1109 (2004)
Frigyesi, A., Veerla, S., Lindgren, D., Hoglund, M.: Independent component analysis reveals new and biologically significant structures in microarray data. BMC Bioinformatics 7, 290 (2006)
Hastie, T., Tibshirani, R., Buja, A.: Flexible discriminant analysis by optimal scoring. Journal of the American statistical association 89, 1255–1270 (1994)
Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634 (1999)
Pohlheim, H.: GEATbx - Genetic and Evolutionary Algorithm Toolbox for use with Matlab (1994-2006)
Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra Mack, S.D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America 96, 6745–6750 (1999)
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)
Nutt, C.L., Mani, D.R., Betensky, R.A., Tamayo, P., Cairncross, J.G., Ladd, C., Pohl, U., Hartmann, C., McLaughlin, M.E., Batchelor, T.T., Black, P.M., von Deimling, A., Pomeroy, S.L., Golub, T.R., Louis, D.N.: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research 63(7), 1602–1607 (2003)
Pochet, N., De Smet, F., Suykens, J.A.K., De Moor, B.L.R.: Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 20(17), 3185–3195 (2004)
Ghosh, D.: Penalized discriminant methods for the classification of tumors from microarray experiments. Biometrics 59, 992–1000 (2003)
Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS 99, 6567–6572 (2002)
Elashoff, J.D., Elashoff, R.M., Goldman, G.E.: On the choice of variables in classification problems with dichotomous variables. Biometrika 54, 668–670 (1967)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, KH., Zhang, J., Li, B., Du, JX. (2009). A GA-Based Approach to ICA Feature Selection: An Efficient Method to Classify Microarray Datasets. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_50
Download citation
DOI: https://doi.org/10.1007/978-3-642-01510-6_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01509-0
Online ISBN: 978-3-642-01510-6
eBook Packages: Computer ScienceComputer Science (R0)