Skip to main content

Polyphone Recognition Using Neural Networks

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5552))

Included in the following conference series:

  • 984 Accesses

Abstract

In this paper, we explore the recognition of polyphone. The cognition process is complex, which needs other additional information, otherwise it may cause uncertainty in decision. Recent research is almost focused on phonetics, while we plan to explore the question with neural networks. H. Haken used synergetic neural network to discuss the recognition of ambivalent patterns and the evolution equation of order parameters can interpret the oscillation in perception. Based on his idea, we argue that the process of cognition is phase transformation. Then we apply Hopfield network (associative memory network) with depressing synapse to simulate the recognition process. With our model, a Chinese polyphone is demonstrated. The result supports our interpretation strongly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schultz, T.: Language-independent and Language-Adaptive Acoustic Modeling for Speech Recognition. Speech Communication 35, 31–51 (2001)

    Article  MATH  Google Scholar 

  2. Torres, H.: Acoustic Speech Unit Segmentation for Concatenative Synthesis. Computer Speech and Language 22, 196–206 (2008)

    Article  Google Scholar 

  3. Haken, H.: Principles of Brain Function, a Synergetic Approach to Brain Activity, Behavior, and Cognition. Springer, Berlin (1995)

    MATH  Google Scholar 

  4. Haken, H.: Synergetic Computers and Cognition: A Top-down Approach to Neural Nets, 2nd edn. Springer, NJ (2004)

    Book  MATH  Google Scholar 

  5. Hopfield, J.: Neural Networks and Physical Systems with Emergent Collective Computational. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amit, D.: The Hebbian Paradigm Reintegrated: Local Reverberations As Intermal Representations. Behavioral and Brain Sciences 18, 617–657 (1995)

    Article  Google Scholar 

  7. Brunel, N.: Network Models of Memory. In: Chow, C., Gutkin, B., Hansel, D., Meunier, C., Dalibard, J. (eds.) Methods and Models in Neurophysics, Volume Session LXXX: Lecture Notes of the Les Houches Summer School 2003, pp. 407–476. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  8. Bibitchkov, D.: Pattern Storage and Processing in Attractor Networks with Short-Time Synaptic Dynamics. Network: Computation in Neural Systems 13, 115–129 (2002)

    Article  MATH  Google Scholar 

  9. Pantic, L.: Associative Memory with Dynamic Synapse. Neural Computation 14, 2903–2923 (2002)

    Article  MATH  Google Scholar 

  10. Hopfield, J.: Neurons with Graded Response Have Collective Computational Properties Like Those of Two-State Neurons. Proceedings of National Academic Science 81, 3088–3092 (1984)

    Article  Google Scholar 

  11. Dayan, P.: Optimizing Synaptic Learning Rules in Linear Associative Memories. Biol. Cyber. 65, 253–265 (1991)

    Article  MATH  Google Scholar 

  12. Palm, G.: Models of Neural Networks III. Springer, Berlin (1996)

    Google Scholar 

  13. Hebb, D.: The Organization of Behavior: a Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  14. Tsodyks, M.: The Neural Code Between Neocortial Pyramidal Neurons Depends on Neurotransmitter Release Probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997)

    Article  Google Scholar 

  15. Fuhrmann, G.: Coding of Temporal Information by Activity-Dependent Synapse. J. Neurophysiol. 87, 140–148 (2002)

    Article  Google Scholar 

  16. Markram, H.: Potential for Multiple Mechanisms, Phenomena and Algorithms for Synaptic Plasticity at Single Synapses. Neuropharmacology 37, 489–500 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, L., Chen, Q., Chen, J., Fang, F. (2009). Polyphone Recognition Using Neural Networks. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_96

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01510-6_96

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01509-0

  • Online ISBN: 978-3-642-01510-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics