Skip to main content

Optical Signal Processing Techniques for Signal Regeneration and Digital Logic

  • Chapter
Towards Digital Optical Networks

Abstract

This chapter presents recent developments in optical signal processing techniques and digital logic. The first section focuses on techniques to obtain key functionalities as signal regeneration and wavelength conversion exploiting nonlinear effects in high nonlinear fibres and semiconductor optical amplifiers. The second section covers techniques for clock recovery and retiming at high-speed transmission up to 320 Gb/s. In addition a technique to obtain OTDM demultiplexing based on cross-phase modulation is reported.

The original version of the book was revised: The copyright line was incorrect. The Erratum to the book is available at DOI: 10.1007/978-3-642-01524-3_13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Winzer, P., et al.: 107-Gb/s optical ETDM transmitter for 100G Ethernet transport. In: Proc. of ECOC, paper Th4.1.1 (2005)

    Google Scholar 

  2. Galili, M., et al.: Low-penalty Raman-Assisted XPM Wavelength Conversion at 320 Gb/s. In: Proc. of CLEO US, paper CThF4 (2007)

    Google Scholar 

  3. Liu, Y., et al.: Error-Free 320 Gb/s SOA-Based Wavelength Conversion Using Optical Filtering. In: Proc. of OFC, paper PDP28 (2006)

    Google Scholar 

  4. Rau, L., et al.: All-optical 160-Gb/s phase reconstructing wavelength conversion using cross-phase modulation (XPM) in dispersion-shifted fibre. IEEE Photonics Technology Letters 16(11), 2520–2522 (2004)

    Article  Google Scholar 

  5. Bergano, N.S.: WDM long haul transmission networks. In: Proc. ECOC96, Oslo, pp. 65–71 (1996)

    Google Scholar 

  6. Agrawal, G.P.: Non Linear Fibre Optics, 4th edn. Academic Press, London (2006)

    Google Scholar 

  7. Ueno, Y., et al.: IEEE Photon. Tech. Lett. 13(5), 469–471 (2001)

    Article  Google Scholar 

  8. Murata, S., et al.: IEEE Photon. Tech. Lett. 3, 1021–1023 (1991)

    Article  Google Scholar 

  9. Olsson, B.-E., Blumenthal, D.J., et al.: IEEE Phot. Technol. Lett 12(7) (2000)

    Google Scholar 

  10. Mamyshev, P.V.: All-optical data regeneration based on self-phase modulation effect. In: Proc. Eur. Conf. Optical Communication (ECOC’98), Madrid, Spain, Sep. 20–24, 1998, pp. 475–476 (1998)

    Google Scholar 

  11. Taccheo, S., Vavassori, P.: paper ThU5. In: OFC 2002, Anaheim, CA, USA (2002)

    Google Scholar 

  12. Taccheo, S., Boivin, L.: paper ThA1. In: OFC 2000, Baltimore, USA (2000)

    Google Scholar 

  13. Forin, D.M., Curti, F., Tosi Beleffi, G.M., et al.: IEEE Phot. Tech. Lett. 17(2), 429–431 (2005)

    Article  Google Scholar 

  14. Patrick, D.M., Ellis, A.D.: IEE Elec. Lett. 29(15), 1391–1392 (1993)

    Article  Google Scholar 

  15. Nakazawa, M., Tamura, K., Kubota, H., Yoshida, E.: Opt. Fibre Tech. 4, 215–223 (1998)

    Article  Google Scholar 

  16. Nakazawa, M., Kubota, H., Tamura, K.: Opt. Lett. 24, 318–320 (1999)

    Article  Google Scholar 

  17. Schwartz, M., Bennet, W.R., Stein, S.: Communication Systems and Techniques. McGraw-Hill, New York (1966)

    Google Scholar 

  18. Forin, D.M., Curti, F., Tosi Beleffi, G.M., Matera, F.: All Optical Fibre 2+1 Auxiliary Carrier Transponder-Regenerator. Photonics Technology Letters 17(2), 429–431 (2005)

    Article  Google Scholar 

  19. Wong, H.C., Ren, G.B., Rorison, J.M.: The constraints on Quantum-dot semiconductor optical amplifiers for multichannel amplification. IEEE PTL, vol 18 (2006)

    Google Scholar 

  20. Sygletos, S., et al.: Multi-wavelength regenerative amplification based on quantum-dot semiconductor optical amplifiers. In: 9th Intern. Conf. on Transparent Optical Networks (ICTON’07), Rome, Italy, July 1–5, 2007, Paper We.D2.5 (invited), pp. 234-237 (2007)

    Google Scholar 

  21. Uskov, A.V., Berg, T.W., Mørk, J.: Theory of pulse-train amplification without patterning effects in Quantum-Dot Semiconductor Optical Amplifiers. IEEE Journal of Quantum Electronics 40(3), 306–320 (2004)

    Article  Google Scholar 

  22. Borri, P., et al.: Spectral Hole Burning and carrier heating dynamics in InGaAs Quantum-dot amplifiers. IEEE Journal of selected topics in Quantum electronics 6(3), 544–551 (2000)

    Article  Google Scholar 

  23. Akiyama, T., et al.: Application of spectral-hole burning in the inhomogeneously broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device. IEEE PTL 12(10), 1301–1303 (2000)

    Article  MathSciNet  Google Scholar 

  24. Sugawara, M., et al.: Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb s-1 and a new scheme of 3R regenerators. Meas. Sci. Technol. 13, 1683–1691 (2002)

    Article  Google Scholar 

  25. Berg, T.W., et al.: Ultrafast gain recovery and modulation limitations in self-assembled Quantum-dot devices. IEEE PTL 13(6), 541–543 (2001)

    Article  Google Scholar 

  26. Gehring, E., et al.: Dynamic spatiotemporal speed control of ultrashort pulses in quantum-dot SOAs. IEEE journal of quantum electronics 42(10), 1047–1054 (2006)

    Article  Google Scholar 

  27. Spyropoulou, M., Sygletos, S., Tomkos, I.: Simulation of multi-wavelength regeneration based on QD semiconductor optical amplifiers. IEEE PTL 19(20), 1577–1579 (2007)

    Article  Google Scholar 

  28. Lee, H., et al.: Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGMand XPM using SOA’s. IEEE Journal of Quantum Electronics 35(8) (1999)

    Google Scholar 

  29. Spyropoulou, M., Sygletos, S., Tomkos, I.: Investigation of multiwavelength regeneration employing Quantum-dot semiconductor optical amplifiers beyond 40Gb/s. In: Proc. of the International Conference on Transparent Optical Networks (ICTON 2007), Rome, pp. 102–105 (2007)

    Google Scholar 

  30. Kagawa, M., et al.: ECOC, paper We3.2.4 (2005)

    Google Scholar 

  31. Clausen, A.T., et al.: CLEO, paper CThQ7 (2004)

    Google Scholar 

  32. Boerner, C., et al.: OFC, paper OTuO3 (2003)

    Google Scholar 

  33. Lach, E., et al.: OFC, paper TuA2 (2002)

    Google Scholar 

  34. Kamatani, O., Kawanishi, S.: Prescaled Timing Extraction From 400 Gbit/s Optical Signal Using an Phase Lock Loop Based on Four-Wave-Mixing in a Laser Diode Amplifier. IEEE Photonics Technology Letters 8(8), 1094–1096 (1996)

    Article  Google Scholar 

  35. Marembert, V., et al.: ECOC, paper Th4.4.1 (2004)

    Google Scholar 

  36. Oxenløwe, L.K., et al.: ECOC, paper We3.5.2 (2004)

    Google Scholar 

  37. Nielsen, M.L., et al.: Electron. Lett. 39(18), 1334–1335 (2003)

    Article  Google Scholar 

  38. Zibar, D., et al.: CLEO, paper CMZ4 (2005)

    Google Scholar 

  39. Ware, C., Oxenløwe, L.K., Agis, F.G., Mulvad, H.C.H., Galili, M., Kurimura, S., Nakajima, H., Ichikawa, J., Erasme, D., Clausen, A.T., Jeppesen, P.: 320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop. Submitted to Optics Express (November 2007)

    Google Scholar 

  40. Oxenløwe, L.K., Gomez Agis, F., Ware, C., Kurimura, S., Mulvad, H.C.H., Galili, M., Kitamura, K., Nakajima, H., Ichikawa, J., Erasme, D., Clausen, A.T., Jeppesen, P.: 640 Gbit/s clock recovery using periodically poled Lithium Niobate. Submitted to Electronics Letters (December 2007)

    Google Scholar 

  41. Sartorius, B., Bornholdt, C., Brox, O., Ehrke, H.J., Hoffman, D., Ludwig, R., Möhrle, M.: All-Optical Clock Recovery Module Based on Self-Pulsating DFB Laser. IEE Electronics Letters 34(17), 1664–1665 (1998)

    Article  Google Scholar 

  42. Jinno, M., Matsumoto, T.: Optical Tank Circuits Used for All-Optical Timing Recovery. IEEE Journal of Quantum Electronics 28(4), 895–900 (1992)

    Article  Google Scholar 

  43. Barnsley, P.: All-Optical Clock Extraction Using Two-Contact Devices. IEE Proceedings – Photonics Journal 140(5), 325–336 (1993)

    Google Scholar 

  44. Yamamoto, T., Oxenløwe, L.K., Schmidt, C., Schubert, C., Hilliger, E., Feiste, U., Berger, J., Ludwig, R., Weber, H.G.: Clock Recovery from 160 Gbit/s Data Signals Using Phase-Locked Loop with Interferometric Optical Switch Based on Semiconductor Optical Amplifier. IEE Electronics Letters 37(8), 509–510 (2001)

    Article  Google Scholar 

  45. Vlachos, K., Theophilopoulos, G., Hatziefremidis, A., Avramopoulos, H.: 30 Gb/s all-optical clock recovery circuit. IEEE Photon. Techonol. Lett. 12, 705–707 (2000)

    Article  Google Scholar 

  46. Carruthers, T.F., Lou, J.W.: 80 to 10 Gbit/s Clock Recovery Using Phase Detection with Mach-Zehnder Modulator. IEE Electronics Letters 37(14), 906–907 (2001)

    Article  Google Scholar 

  47. Wang, T., Li, Z., Lou, C., Wu, Y., Gao, Y.: Comb-Like Pre-processing to Reduce the Pattern Effect in the Clock Recovery Based on SOA. IEEE Photonics Technology Letters 14(6), 855–857 (2002)

    Article  Google Scholar 

  48. Aleksic, S., Ribnicsek, G.: Fast Clock Recovery Methods for Application in All-Optical Networks. In: Conference on Optical Network Design and Modeling (ONDM 2006), Copenhagen, May 2006, pp. 1–5 (2006)

    Google Scholar 

  49. Silveira, T.G., Teixeira, A., Tosi Beleffi, G., Forin, D., Monteiro, P., Furukawa, H., Wada, N.: All-Optical Conversion From RZ to NRZ Using Gain-Clamped SOA. IEEE Photon. Tech. Lett. 19(6) (2007)

    Google Scholar 

  50. Ono, S., Okabe, R., Futami, F., Watanabe, S.: Novel demultiplexer for ultra high speed pulses using a perfect phase-matched parametric amplifier. In: OFC 2006 (March 2006)

    Google Scholar 

  51. Song, X., Yu, F.C., Song, H., Sugiyama, M., Nakano, Y.: All-Optical OTDM DEMUX with Monolithic SOA-MZI Switch by Regrowth-Free Selective Area MOVPE. In: Lasers and Electro-Optics, CLEO/Pacific 2005 (Aug. 2005)

    Google Scholar 

  52. Olsson, B.-E., Blumenthal, D.J., et al.: A Simple and Robust 40-Gb/s Wavelength Converter Using Fibre Cross-Phase Modulation and Optical Filtering. IEEE Phot. Technol. Lett. 12(7) (2000)

    Google Scholar 

  53. Watanabe, S., et al.: 160 Gb/s Optical 3R-Regenerator in Fibre Transmission experiment. In: Proc. of OFC, PD16-1 (2003)

    Google Scholar 

  54. Petropoulos, P., et al.: Rectangular pulse generation based on pulse reshaping using a superstructured fibre Bragg grating. J. Lightwave Technol. 19, 746–752 (2001)

    Article  MathSciNet  Google Scholar 

  55. Parmigiani, F., et al.: All-optical pulse reshaping and retiming systems incorporating a pulse shaping fibre Bragg grating. J. Lightwave Technol. 24(1), 357–364 (2006)

    Article  Google Scholar 

  56. Oxenløwe, L.K., et al.: ECOC, paper We2.3.4 (2006)

    Google Scholar 

  57. Park, Y., et al.: Opt. Express 14(26), 12671 (2006)

    Article  Google Scholar 

  58. Oxenløwe, L.K., et al.: CLEO-Europe’07, paper CI8-1 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ennser, K. et al. (2009). Optical Signal Processing Techniques for Signal Regeneration and Digital Logic. In: Tomkos, I., Spyropoulou, M., Ennser, K., Köhn, M., Mikac, B. (eds) Towards Digital Optical Networks. Lecture Notes in Computer Science, vol 5412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01524-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01524-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01523-6

  • Online ISBN: 978-3-642-01524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics