Skip to main content

A Decomposition of the Pure Parsimony Haplotyping Problem

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5542))

Included in the following conference series:

  • 701 Accesses

Abstract

We partially order a collection of genotypes so that we can represent the NP-Hard problem of inferring the least number of haplotypes in terms of substructures we call g-lattices. This representation allows us to prove that the problem can be solved efficiently if the genotypes partition into chains with certain structure. Even without the specified structure, the decomposition shows how to separate the underlying integer programming model into smaller models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clark, A.G.: Inference of haplotypes from PCR-amplified samples of diploid populations. Molecular Biology and Evolution 7(2), 111–122 (1990)

    CAS  PubMed  Google Scholar 

  2. Gusfield, D.: Inference of haplotypes from samples of diploid populations: Complexity and algorithms. Journal of Computational Biology 8(3), 305–324 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Greenberg, H., Hart, W.E., Lancia, G.: Opportunities for combinatorial optimization in computational biology. INFORMS Journal on Computing 16, 221–231 (2004)

    Google Scholar 

  4. Gusfield, D.: Haplotyping inference by pure parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Brown, D.G., Harrower, I.M.: Integer programming approaches to haplotype inference by pure parsimony. IEEE/ACM Transactions on Computational Biology and Bioinfomatics 3, 141–154 (2006)

    Article  CAS  Google Scholar 

  6. Catanzaro, D., Godi, A., Labbé, M.: A class representative model for pure parsimony haplotyping. INFORMS Journal on Computing (2008) (to appear)

    Google Scholar 

  7. Halldórsson, B.V., Bafna, V., Edwards, N., Lipper, R., Yooseph, S., Istrail, S.: A survey of computational methods for determining haplotypes. In: Istrail, S., Waterman, M.S., Clark, A. (eds.) DIMACS/RECOMB Satellite Workshop 2002. LNCS (LNBI), vol. 2983, pp. 26–47. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Lancia, G., Pinotti, M., Rizzi, R.: Haplotyping populations by pure parsimony. complexity, exact and approximation algorithms. INFORMS Journal on Computing 16(4), 348–359 (2004)

    Article  Google Scholar 

  9. Lancia, G., Rizzi, R.: A polynomial case of the parsimony haplotyping problem. Operations Research Letters 34, 289–295 (2006)

    Article  Google Scholar 

  10. Gusfield, D., Orzack, S.H.: Haplotype inference. In: Aluru, A. (ed.) Handbook of Computational Molecular Biology. Chapman and Hall/CRC, Boca Raton (2006)

    Google Scholar 

  11. Consortium, T.I.H.: Integrating ethics and science in the international hapmap project. Nature Reviews Genetics 5, 467–475 (2004), www.hapmap.org

    Article  Google Scholar 

  12. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In: Proceedings of RECOMB 2002: The Sixth Annual International Conference on Computational Biology, pp. 166–175 (2002)

    Google Scholar 

  13. Chung, R.H., Gusfield, D.: Perfect phylogeny haplotyper: Haplotype inferral using a tree model. Bioinformatics 19(6), 780–781 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for perfect phylogeny haplotyping. Journal of Computational Biology 13, 522–553 (2006)

    Article  CAS  PubMed  Google Scholar 

  15. Blain, P., Davis, C., Holder, A., Silva, J., Vinzant, C.: Diversity graphs. In: Butenko, S., Chaovalitwongse, W., Pardalos, P. (eds.) Clustering Challenges in Biological Networks. World Scientific, Singapore (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holder, A., Langley, T. (2009). A Decomposition of the Pure Parsimony Haplotyping Problem. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds) Bioinformatics Research and Applications. ISBRA 2009. Lecture Notes in Computer Science(), vol 5542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01551-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01551-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01550-2

  • Online ISBN: 978-3-642-01551-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics