Skip to main content

A Linear-Time Algorithm for Analyzing Array CGH Data Using Log Ratio Triangulation

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5542))

Included in the following conference series:

  • 703 Accesses

Abstract

DNA copy number is the number of replicates of a contiguous segment of DNA on the genome. Copy number alteration (CNA) is a genetic abnormality in which the number of these segments differs from the normal copy number, which is two for human chromosomal DNA. The association of CNA with cancer has led to a proliferation of research into algorithmic methods for detecting these regions of genetic abnormality. We propose a linear-time algorithm to identify chromosomal change points using array comparative genomic hybridization (aCGH) data. This method treats log-2 ratio values as points in a triangle and segments the genome into regions of equal copy number by exploiting the properties of log-2 ratio values often seen at segment boundaries. Applying our method to real and simulated aCGH datasets shows that the triangulation method is fast and is robust for data with low to moderate noise levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Veltman, J.A., Fridlyand, J., Pejavar, S., Olshen, A., Korkola, J., DeVries, S., Carroll, P., Kuo, W., Pinkel, D., Albertson, D., Cordon-Cardo, C., Jain, A., Waldman, F.: Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors. Cancer Res. 63, 2872–2880 (2003)

    CAS  PubMed  Google Scholar 

  2. Whang-Peng, J., Kao-Shan, C., Lee, E., Bunn, P., Carney, D., Gadzar, A., Minna, J.: Specific chromosome defect associated with human small cell lung cancer; deletion 3p(14-23). Science 215, 181–182 (1982)

    Article  CAS  PubMed  Google Scholar 

  3. de Leeuw, R., Davies, J., Rosenwald, A., Bebb, G., Gascoyne, D., Dyer, M., Staudt, L., Martinez-Climent, J., Lam, W.: Comprehensive whole genome array cgh profiling of mantle cell lymphoma model genomes. Hum. Mol. Genet. 13(17), 1827–1837 (2004)

    Article  PubMed  Google Scholar 

  4. Fridlyand, J., Snijders, A., Ylstra, B., Li, H., Olshen, A., Segraves, R., Dairkee, Shanaz, Tokuasu, T., Ljung, B., Jain, A., McLenna, J., Ziegler, J., Chin, K., DeVries, S., Feiler, H., Gray, J., Waldman, F., Pinkel, D., Albertson, D.: Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6, 96 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang, Y., Makedon, F., Pearlman, J.: Tumor classification based on DNA copy number aberrations determined using SNP arrays. Oncology Reports 15, 1057–1061 (2006)

    CAS  PubMed  Google Scholar 

  6. Pinkel, D., Albertson, D.G.: Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 37, suppl. S11–S17 (2005)

    Article  Google Scholar 

  7. Snijders, A., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J., Hamilton, G., Hindle, A., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer, J., Ylstra, B., Yue, J., Gray, J., Jain, A., Pinkel, D., Albertson, D.: Assembly of microarrays for genome-wide measurement of DNA copy number. Nat. Genet. 3, 263–264 (2001)

    Article  Google Scholar 

  8. Olshen, A., Venkatraman, E.: Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004)

    Article  PubMed  Google Scholar 

  9. Willenbrock, H., Fridlyand, J.: A comparison study: applying segmentation to array CGH data for downstream analyses. Bioinformatics 21(22), 4084–4091 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. Lai, W., Johnson, M., Kucherlapati, R., Park, P.: Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics 21, 3763–3770 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Venkatraman, E., Olshen, A.: A Faster Circular Binary Segmentation Algorithm for the Analysis of Array CGH Data. Bioinformatics 23(6), 657–663 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Guha, S., Li, Y., Neuberg, D.: Bayesian Hidden Markov Modeling of Array CGH Data. Harvard University Biostatistics Working Paper Series. Working Paper 24 (2006)

    Google Scholar 

  13. Fridlyand, J., Snijders, A., Pinkel, D., Albertson, D., Jain, A.: Hidden Markov models approach to the analysis of array CGH data. J. Multivar. Anal. 90, 132

    Google Scholar 

  14. Durbin, R., et al.: Biological Sequence Analysis. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  15. Daruwala, R., Rudra, A., Ostrer, H., Lucito, R., Wigler, M., Mishra, B.: A versatile statistical analysis algorithm to detect genome copy number variation. Proc. Natl. Acad. Sci. 101(46), 16292–16297 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L., Gonzalez, J.R., Gratacos, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M.J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Armengol, L., Conrad, D.F., Estivill, X., Tyler-Smith, C., Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W., Hurles, M.E.: Global variation in copy number in the human genome. Nature 444(7118), 444–454 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carter, N.P.: Methods and strategies for analyzing copy number variation using dna microarrays. Nat. Genet. 39(suppl. 7), S16–S21 (2007)

    Article  Google Scholar 

  18. Chiang, D.Y., Getz, G., Jaffe, D.B., O’Kelly, M.J., Zhao, X., Carter, S.L., Russ, C., Nusbaum, C., Meyerson, M., Lander, E.S.: High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods 6(1), 99–103 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hayes, M., Li, J. (2009). A Linear-Time Algorithm for Analyzing Array CGH Data Using Log Ratio Triangulation. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds) Bioinformatics Research and Applications. ISBRA 2009. Lecture Notes in Computer Science(), vol 5542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01551-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01551-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01550-2

  • Online ISBN: 978-3-642-01551-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics