Skip to main content

Assessing the Power of a Visual Modeling Notation – Preliminary Contemplations on Designing a Test –

  • Conference paper
Models in Software Engineering (MODELS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5421))

Abstract

This paper reports on preliminary thoughts which have been conducted in designing an empirical experiment to assess the comprehensibility of a visual notation in comparison to a textual notation. The paper sketches shortly how a corresponding hypothesis could be developed. Furthermore, it presents several recommendations that aim at the reduction of confounding effects. It is believed that these recommendations are applicable to other experiments in the domain of MDE, too. Finally, the paper reports on initial experiences that have been made while formulating test questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akehurst, D., Howells, G., McDonal-Maier, K.: Implementing Associations: UML 2.0 to Java 5. Software and Systems Modeling (SoSyM) 6(1), 3–35 (2007)

    Article  Google Scholar 

  2. Ambler, S.W.: The Elements of UML 2.0 Style. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  3. Andriyevska, O., Dragan, N., Simoes, B., Maletic, J.I.: Evaluating UML Class Diagram Layout based on Architectural Importance. In: Proc. of VISSOFT 2005, pp. 14–19. IEEE, Los Alamitos (2005)

    Google Scholar 

  4. Bortz, J., Döring, N.: Forschungsmethoden und Evaluation für Sozialwissenschaftler (Research Methods and Evaluation for Social Scientist). Springer, Heidelberg (1995)

    Google Scholar 

  5. Burkhardt, J.-M., Détienne, F., Wiedenbeck, S.: Object-Oriented Program Comprehension: Effect of Expertise, Task and Phase. Empirical Software Engineering 7(2), 115–156 (2002)

    Article  MATH  Google Scholar 

  6. Davies, S.P.: Expertise and the Comprehension of Object-Oriented Programs. In: Proc. of Workshop of the Psychology of Programming Interest Group, pp. 61–66 (2000)

    Google Scholar 

  7. Eichelberger, H.: Nice Class Diagrams Admit Good Design? In: Proc. of SoftVis 2003, pp. 159–167. ACM, New York (2003)

    Google Scholar 

  8. Gabriel, R.: Patterns of Software - Tales from the Software Community. Oxford University Press, Oxford (1996)

    Google Scholar 

  9. Génova, G., del Castillo, C.R., Llorens, J.: Mapping UML Associations into Java Code. Journal of Object Technology (JOT) 2(5), 135–162 (2003)

    Article  Google Scholar 

  10. Gessenharter, D.: Mapping the UML2 Semantics of Associations to a Java Code Generation Model. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 813–827. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Green, T.: Conditional Program Statements and their Comprehensibility to Professional Programmers. Journal of Occupational Psychology 50(2), 93–109 (1977)

    Article  Google Scholar 

  12. Green, T., Petre, M., Bellamy, R.K.E.: Comprehensibility of Visual and Textual Programs: A Test of Superlativism Against the ‘Match-Mismatch’ Conjecture. In: Empirical Studies of Programmers: 4th Workshop, pp. 121–146 (1991)

    Google Scholar 

  13. Hendrix, T.D., Cross II, J.H., Maghsoodloo, S.: The Effectiveness of Control Structure Diagrams in Source Code Comprehension Activities. IEEE Trans. Software Eng. 28(5), 463–477 (2002)

    Article  Google Scholar 

  14. Henney, K.: Overload 45 (October 2001), http://accu.org/index.php/journals/432

  15. Krebs, R.: Die wichtigsten Regeln zum Verfassen guter Multiple-Choice Fragen (Most Important Rules for Writing Good Multiple-Choice Questions), IAWF, Berlin (1997)

    Google Scholar 

  16. McGuinness, C.: Problem Representation: The Effects of Spatial Arrays. Memory & Cognition 14(3), 270–280 (1986)

    Article  MathSciNet  Google Scholar 

  17. Miara, R.J., Musselman, J.A., Navarro, J.A., Shneiderman, B.: Program Indentation and Comprehensibility. Comm. of the ACM 26(11), 861–867 (1983)

    Article  Google Scholar 

  18. Moher, T.G., Mak, D.C., Blumenthal, B., Leventhal, L.M.: Comparing the Comprehensibility of Textual and Graphical Programs: The Case of Petri-Nets. In: Empirical Studies of Programmers: 5th Workshop, pp. 137–161 (1993)

    Google Scholar 

  19. Neary, D.S., Woodward, M.R.: An Experiment to Compare the Comprehensibility of Textual and Visual Forms of Algebraic Specifications. Journal of Visual Languages and Computing 13(2), 149–175

    Google Scholar 

  20. Object Management Group (OMG), UML 2.1.1 Superstructure Specification, Document formal/2007-02-05

    Google Scholar 

  21. Petre, M.: Why Looking Isn’t Always Seeing: Readership Skills and Graphical Programming. Commun. of the ACM 38(6), 33–44 (1995)

    Article  Google Scholar 

  22. Popper, K.: Logik der Forschung (The Logic of Scientific Discovery, 1959) (1934)

    Google Scholar 

  23. Prechelt, L.: Kontrollierte Experimente in der Softwaretechnik (Controlled Experiments in Software Engineering). Springer, Heidelberg (2001)

    Book  Google Scholar 

  24. Purchase, H.C., Colpoys, L., McGill, M., Carrington, D., Britton, C.: UML Class Diagram Syntax: An Empirical Study of Comprehension. In: Proc. of Australasian Symposium on Information Visualisation, pp. 113–120 (2001)

    Google Scholar 

  25. Purchase, H.C., Colpoys, L., McGill, M., Carrington, D.: UML Collaboration Diagram Syntax: An Empirical Study of Comprehension. In: Proc. of VISSOFT 2002, pp. 13–22. IEEE, Los Alamitos (2002)

    Google Scholar 

  26. Rambally, G.K.: The Influence of Color on Program Readability and Comprehensibility. In: Proc. of SIGCSE 1986, pp. 173–181. ACM, New York (1986)

    Google Scholar 

  27. Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., Ceccato, M.: The Role of Experience and Ability in Comprehension Tasks supported by UML Stereotypes. In: Proc. of ICSE 2007, pp. 375–384. IEEE, Los Alamitos (2007)

    Google Scholar 

  28. Scanlan, D.A.: Structured Flowcharts Outperform Pseudocode: An Experimental Comparison. IEEE Software 6(5), 28–36 (1989)

    Article  Google Scholar 

  29. Shneiderman, B., Mayer, R., McKay, D., Heller, P.: Experimental Investigations of the Utility of Detailed Flowcharts in Programming. Comm. of the ACM 20(6), 373–381 (1977)

    Article  Google Scholar 

  30. Sun, Code Conventions for the Java Programming Language, April 20 (1999), http://java.sun.com/docs/codeconv/

  31. Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen, A.: Experimentation in Software Engineering - An Introduction. Kluwer, Dordrecht (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stein, D., Hanenberg, S. (2009). Assessing the Power of a Visual Modeling Notation – Preliminary Contemplations on Designing a Test –. In: Chaudron, M.R.V. (eds) Models in Software Engineering. MODELS 2008. Lecture Notes in Computer Science, vol 5421. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01648-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01648-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01647-9

  • Online ISBN: 978-3-642-01648-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics