Skip to main content

Control of a Bipedal Walking Robot Using a Fuzzy Precompensator

  • Conference paper
Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2009)

Abstract

The Computed Torque Control (CTC) is an effective motion control strategy for a biped walking robot, which can ensure globally asymptotic stability. However, CTC scheme requires precise dynamical models of biped robot. To handle this impossibility, we proposed an approach combing CTC and fuzzy logic controller to regulate the dynamic walking of a planar 7 degrees-of-freedom under-actuated biped robot to follow a specified trajectory. A computed torque is used to achieve high speed and high precision tracking while the fuzzy controller behaves remedies for any parameter deviation compensating thus for unknown uncertainties and disturbances. Finally, computer simulation are carried on and results are presented to show tracking capability and effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chemori, A., Amir, M.: Generation of Multi-steps limit cycles for Rabbit using a low dimensional nonlinear predictive control scheme. In: International Conference on Intelligent Robots and Systems, IEEE/RSJ IROS, Sendai, Japan (2004)

    Google Scholar 

  2. Brogliato, B.: Nonsmooth mechanics. Models dynamics and control. LNCIS, vol. 220. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  3. Sabourin, C., Bruneau, O., Fontain, J.G.: Control strategy for the dynamic walking of a bipedal robot based on passive and active stages. In: 12th Inter. Symp. On Measur. and Control in Robotics, ISMCR (2002)

    Google Scholar 

  4. Sabourin, C., Bruneau, O.: Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks. Robotics and Autonomous Systems 51, 81–99 (2005)

    Article  Google Scholar 

  5. Chevallereau, C., Formal’sky, A., Perrin, B.: Low energy cost reference trajectories for a biped robot. In: Proc. IEEE Conf. Robotics Automat. Leuven, Belgium, pp. 1398–1404 (1998)

    Google Scholar 

  6. Chevallereau, C., Sardin, P.: Design and actuation optimisation of a 4 axes biped robot for walking and running. In: Proc. IEEE Conf. Robotics Automat., Leuven, Belgum, pp. 3365–3370 (2000)

    Google Scholar 

  7. Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E.R., Canudasde, C., Wit Grizzle, J.W.: Rabbit: A testbed for advanced control theory. IEEE Control System Magazine 23(5), 57–79 (2003)

    Article  Google Scholar 

  8. Mandani, E.H., Assilian, S.: Application of fuzzy algorithms for control of simple dynamic plant. In: Proc. of the Institute of Electrical Engineers, vol. 121, pp. 585–1588 (1974)

    Google Scholar 

  9. Westervelt, E.R., Grizzle, J.W., Koditschek, D.E.: Hybrid zero dynamics of planar biped walkers. IEEE Trans. On Automat. Contr. 48(1), 42–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Abdessemed, A., Benmahammed, K.: A two layer robot controller design using evolutionary algorithm. Journal of intelligent and Robotic Systems 30, 73–94 (2001)

    Article  MATH  Google Scholar 

  11. Abdessemed, A., Benmahammed, K.: Soft Computing based Mobile Manipulator Controller Design. Industrial Robotics Therory Modelling Control, ARS/PVI, Germany, December 2006, p. 964 (2006) ISBN 3-86611-284-x

    Google Scholar 

  12. Hurmuzlu, Marhitu, D.B.: Rigid body collisions of planar kinematics chains with multiple contact points. Int. J. Rob Research 13(1), 82–92 (1994)

    Article  Google Scholar 

  13. Juang, J.G., Lin, C.S.: Gait synthesis of a biped robot using back-propagation through time algorithm. In: Proc. IEEE Int. Conf. Neural Networks, vol. 3, pp. 1710–1715 (1996)

    Google Scholar 

  14. Juang, J.G.: Intelligent path training of a five-link walking robot. In: Proc. IEEE Int. Symp. Intelligent Control, pp. 1–6 (1996)

    Google Scholar 

  15. Juang, J.G.: Fuzzy Neural Network approaches for Robotic Gait Synthetics. IEEE Transactions on systems. MNA, and cybernetics-part B cybernetics 30(4) (August 2000)

    Google Scholar 

  16. Park, J.H., Kim, K.D.: Biped robot walking using gravity compensated inverted pendulum mode and computed torque control. In: Proc. IEEE International Conference on Robotics Automat., Leuven Belgium (1998)

    Google Scholar 

  17. Roussel, L., Canudas, C., Goswami, A.: Generation of energy optimal complete gait cycles for biped robots. In: Proc. IEEE Conf. Robotics Automat., Leuven, Belgium, pp. 2036–2041 (1998)

    Google Scholar 

  18. Magdalena, L., Monasterio, F.: Evolutionary-based learning applied to fuzzy controllers. In: Proc. IEEE Int. Conf. Fuzzy Systems, vol. 3(4), pp. 1111–1118 (1995)

    Google Scholar 

  19. Magdalena, L., Monasterio, F.: Learning gait patterns for the fuzzy synthesis of biped walking. In: Proc. Int. Joint Conf. NAFIPS, IFIS and NASA, pp. 248–250 (1994)

    Google Scholar 

  20. Magdalena, L., Monasterio, F.: Fuzzy controlled gait synthesis of a biped walking machines. In: Proc. IEEE Int. Conf Fuzzy Systems, vol. 2, pp. 1334–1339 (1993)

    Google Scholar 

  21. Hardt, M., Kreutz-Delgado, K., Helton, J.: Minimal energy control of a biped robot with numerical methods and recursive symbolic model. In: Proc. 37th IEEE Conf. Decision Contr., Florida, USA, pp. 413–416 (1998)

    Google Scholar 

  22. Lebastard, V., Aoustin, Y., Plestan, F.: Observer-Based Control of a biped robot. In: Fourth International Workshopon Robot Motion and Control, June 17-20 (2004)

    Google Scholar 

  23. Murakami, S., Yamamoto, E., Fujimoto, K.: Fuzzy control of Dynamic biped walking robot. In: IEEE International Conference on Fuzzy Systems (1995)

    Google Scholar 

  24. Werbos, P.: Backpropagation through time: What it does and how to do it. Proc. IEEE 78, 1550–1560 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bououden, S., Abdessemed, F., Abderraouf, B. (2009). Control of a Bipedal Walking Robot Using a Fuzzy Precompensator. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2009. Lecture Notes in Computer Science(), vol 5559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01665-3_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01665-3_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01664-6

  • Online ISBN: 978-3-642-01665-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics