Abstract
The Computed Torque Control (CTC) is an effective motion control strategy for a biped walking robot, which can ensure globally asymptotic stability. However, CTC scheme requires precise dynamical models of biped robot. To handle this impossibility, we proposed an approach combing CTC and fuzzy logic controller to regulate the dynamic walking of a planar 7 degrees-of-freedom under-actuated biped robot to follow a specified trajectory. A computed torque is used to achieve high speed and high precision tracking while the fuzzy controller behaves remedies for any parameter deviation compensating thus for unknown uncertainties and disturbances. Finally, computer simulation are carried on and results are presented to show tracking capability and effectiveness of the proposed scheme.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chemori, A., Amir, M.: Generation of Multi-steps limit cycles for Rabbit using a low dimensional nonlinear predictive control scheme. In: International Conference on Intelligent Robots and Systems, IEEE/RSJ IROS, Sendai, Japan (2004)
Brogliato, B.: Nonsmooth mechanics. Models dynamics and control. LNCIS, vol. 220. Springer, Heidelberg (1996)
Sabourin, C., Bruneau, O., Fontain, J.G.: Control strategy for the dynamic walking of a bipedal robot based on passive and active stages. In: 12th Inter. Symp. On Measur. and Control in Robotics, ISMCR (2002)
Sabourin, C., Bruneau, O.: Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks. Robotics and Autonomous Systems 51, 81–99 (2005)
Chevallereau, C., Formal’sky, A., Perrin, B.: Low energy cost reference trajectories for a biped robot. In: Proc. IEEE Conf. Robotics Automat. Leuven, Belgium, pp. 1398–1404 (1998)
Chevallereau, C., Sardin, P.: Design and actuation optimisation of a 4 axes biped robot for walking and running. In: Proc. IEEE Conf. Robotics Automat., Leuven, Belgum, pp. 3365–3370 (2000)
Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E.R., Canudasde, C., Wit Grizzle, J.W.: Rabbit: A testbed for advanced control theory. IEEE Control System Magazine 23(5), 57–79 (2003)
Mandani, E.H., Assilian, S.: Application of fuzzy algorithms for control of simple dynamic plant. In: Proc. of the Institute of Electrical Engineers, vol. 121, pp. 585–1588 (1974)
Westervelt, E.R., Grizzle, J.W., Koditschek, D.E.: Hybrid zero dynamics of planar biped walkers. IEEE Trans. On Automat. Contr. 48(1), 42–56 (2003)
Abdessemed, A., Benmahammed, K.: A two layer robot controller design using evolutionary algorithm. Journal of intelligent and Robotic Systems 30, 73–94 (2001)
Abdessemed, A., Benmahammed, K.: Soft Computing based Mobile Manipulator Controller Design. Industrial Robotics Therory Modelling Control, ARS/PVI, Germany, December 2006, p. 964 (2006) ISBN 3-86611-284-x
Hurmuzlu, Marhitu, D.B.: Rigid body collisions of planar kinematics chains with multiple contact points. Int. J. Rob Research 13(1), 82–92 (1994)
Juang, J.G., Lin, C.S.: Gait synthesis of a biped robot using back-propagation through time algorithm. In: Proc. IEEE Int. Conf. Neural Networks, vol. 3, pp. 1710–1715 (1996)
Juang, J.G.: Intelligent path training of a five-link walking robot. In: Proc. IEEE Int. Symp. Intelligent Control, pp. 1–6 (1996)
Juang, J.G.: Fuzzy Neural Network approaches for Robotic Gait Synthetics. IEEE Transactions on systems. MNA, and cybernetics-part B cybernetics 30(4) (August 2000)
Park, J.H., Kim, K.D.: Biped robot walking using gravity compensated inverted pendulum mode and computed torque control. In: Proc. IEEE International Conference on Robotics Automat., Leuven Belgium (1998)
Roussel, L., Canudas, C., Goswami, A.: Generation of energy optimal complete gait cycles for biped robots. In: Proc. IEEE Conf. Robotics Automat., Leuven, Belgium, pp. 2036–2041 (1998)
Magdalena, L., Monasterio, F.: Evolutionary-based learning applied to fuzzy controllers. In: Proc. IEEE Int. Conf. Fuzzy Systems, vol. 3(4), pp. 1111–1118 (1995)
Magdalena, L., Monasterio, F.: Learning gait patterns for the fuzzy synthesis of biped walking. In: Proc. Int. Joint Conf. NAFIPS, IFIS and NASA, pp. 248–250 (1994)
Magdalena, L., Monasterio, F.: Fuzzy controlled gait synthesis of a biped walking machines. In: Proc. IEEE Int. Conf Fuzzy Systems, vol. 2, pp. 1334–1339 (1993)
Hardt, M., Kreutz-Delgado, K., Helton, J.: Minimal energy control of a biped robot with numerical methods and recursive symbolic model. In: Proc. 37th IEEE Conf. Decision Contr., Florida, USA, pp. 413–416 (1998)
Lebastard, V., Aoustin, Y., Plestan, F.: Observer-Based Control of a biped robot. In: Fourth International Workshopon Robot Motion and Control, June 17-20 (2004)
Murakami, S., Yamamoto, E., Fujimoto, K.: Fuzzy control of Dynamic biped walking robot. In: IEEE International Conference on Fuzzy Systems (1995)
Werbos, P.: Backpropagation through time: What it does and how to do it. Proc. IEEE 78, 1550–1560 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bououden, S., Abdessemed, F., Abderraouf, B. (2009). Control of a Bipedal Walking Robot Using a Fuzzy Precompensator. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds) Agent and Multi-Agent Systems: Technologies and Applications. KES-AMSTA 2009. Lecture Notes in Computer Science(), vol 5559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01665-3_86
Download citation
DOI: https://doi.org/10.1007/978-3-642-01665-3_86
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01664-6
Online ISBN: 978-3-642-01665-3
eBook Packages: Computer ScienceComputer Science (R0)