Abstract
This paper proposes a new framework to automatically generate visual object database meanwhile efficiently learn the object’s model. The system is of important need for the problems of object detection and recognition. Our main idea is to acquire the huge amount of video data actively, and seeks out opportunities to autonomously exploit information from object samples. We employ autonomous learning approach based on online boosting technique, which allows to combine an object detector trained on a single initialized input image with tracking to extract object samples for learning. The autonomous learning process with interactive learning strategy allows to adaptively improve the learning object model while generating informative samples. Our method allows to generate thousands of object samples within hours from large video databases or from live camera, thus saving time and labor’s efforts. We will show that the proposed method can extracts well-localized, diverse appearances of object examples from video sequence through only one initialized input sample, and builds robust object model. In addition to requiring very little human intervention, a significant benefit of this method is that it does not require pre-training. In the experiments, the approach is evaluated in detail for creating data sets and learning for the problems of human hand gesture recognition and face detection. In addition, to show the generality, results for different objects are also presented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR, IEEE, vol. 1, pp. 260–267 (2006)
Hertz, T., Bar-Hilled, A., Weinshall, D.: Learning distance functions for image retrieval. In: Proc. CVPR, IEEE, vol. 2, pp. 570–577 (2004)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. CVPR, IEEE, vol. I, pp. 511–518 (2001)
Tieu, K., Viola, P.: Boosting image retrieval. In: Proc. CVPR, IEEE, pp. 228–235 (2000)
Rowley, H., Baluja, S., Kanade, T.: Neural Network-based Face Detection. IEEE Trans. On PAMI 20(1), 23–38 (1998)
Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods - Support Vector Learning (1998)
Levin, A., Viola, P., Freund, Y.: Unsupervised improvement of visual detectors using co-training. In: Proc. IEEE CVPR, vol. I, pp. 626–633 (2003)
Nair, V., Clark, J.: An unsupervised, online learning framework for moving object detection. In: Proc. IEEE CVPR, vol. II, pp. 317–324 (2004)
Sung, K., Poggio, T.: Example-based learning for view-based face detection. IEEE Trans. on PAMI 20(1), 39–51 (1998)
Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and Practice of Background Subtraction. In: Proc. of ICCV, pp. 255–261 (1999)
Elgamal, A., Harwood, D., Davis, L.: Non-parametric Model for Background Substraction. In: Proc. of ECCV (2000)
Sivic, J., Schaffalitzky, F., Zisserman, A.: Object level grouping for video shots. In: Proc. ECCV, vol. I, pp. 85–98 (2004)
Sivic, J., Everingham, M., Zisserman, A.: Person spotting: Video shot retrieval for face sets. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 226–236. Springer, Heidelberg (2005)
Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a probabilistic assembly of robust detectors. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 69–82. Springer, Heidelberg (2004)
Hewitt, R., Belongie, S.: Active learning in face recognition: Using tracking to build a face model. In: Proc. IEEE Workshop on Vision for Human-Computer Interaction (2006)
Wu, B., Nevatia, R.: Improving part based object detection by unsupervised, online boosting. In: Proc. IEEE Computer vision and Pattern Recognition (2007)
Javed, O., Ali, S., Shah, M.: Online detection and classification of moving objects using progressively improving detectors. In: Proc. IEEE CVPR (2005)
Oza, N.C., Russell, S.: Experimental comparisons of online and batch versions of bagging and boosting. In: Proc. ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining (2001)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings, CVPR, San Diego, CA, USA, vol. 1, pp. 886–893 (2005)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Kolsch, M., Turk, M.: Fast 2D Hand Tracking with Flocks of Features and Multi-Cue Integration. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop, pp. 158–166 (2004)
Ross, D., Lim, J., Lin, R., Yang, M.H.: Incremental Learning for Robust Visual Tracking, the International Journal of Computer Vision. Special Issue: Learning for Vision (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dang Binh, N., Nguyen, T.T. (2009). Automatic Database Creation and Object’s Model Learning. In: Richards, D., Kang, BH. (eds) Knowledge Acquisition: Approaches, Algorithms and Applications. PKAW 2008. Lecture Notes in Computer Science(), vol 5465. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01715-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-01715-5_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01714-8
Online ISBN: 978-3-642-01715-5
eBook Packages: Computer ScienceComputer Science (R0)