Abstract
Activity recognition has attracted increasing attention in recent years due to its potential to enable a number of compelling context-aware applications. As most approaches rely on supervised learning methods, obtaining substantial amounts of labeled data is often an important bottle-neck for these approaches. In this paper, we present and explore a novel method for activity recognition from sparsely labeled data. The method is based on multi-instance learning allowing to significantly reduce the required level of supervision. In particular we propose several novel extensions of multi-instance learning to support different annotation strategies. The validity of the approach is demonstrated on two public datasets for three different labeling scenarios.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B., Landay, J.A.: MyExperience: A System for In situ Tracing and Capturing of User Feedback on Mobile Phones. In: Proceedings of the 5th International Conference on Mobile Systems, Applications, and Services (MobiSys) (2007)
Huynh, T., Fritz, M., Schiele, B.: Discovery of Activity Patterns using Topic Models. In: Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp) (2008)
Maurer, U., Smailagic, A., Siewiorek, D., Deisher, M.: Activity Recognition and Monitoring Using Multiple Sensors on Different Body Positions. In: Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN) (2006)
Logan, B., Healey, J., Philipose, M., Tapia, E., Intille, S.: A Long-Term Evaluation of Sensing Modalities for Activity Recognition. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 483–500. Springer, Heidelberg (2007), http://architecture.mit.edu/house_n/data/PlaceLab/PlaceLab.htm
Laerhoven, K.V., Kilian, D., Schiele, B.: Using Rhythm Awareness in Long-Term Activity Recognition. In: Proceedings of the 12th IEEE International Symposium on Wearable Computers (ISWC) (2008)
Tapia, E.M., Intille, S.S., Larson, K.: Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)
Lester, J., Choudhury, T., Borriello, G.: A Practical Approach to Recognizing Physical Activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)
Bao, L., Intille, S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)
Wyatt, D., Philipose, M., Choudhury, T.: Unsupervised Activity Recognition Using Automatically Mined Common Sense. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI) (2005)
Duong, T.V., Bui, H.H., Phung, D.Q., Venkatesh, S.: Activity Recognition and Abnormality Detection with the Switching Hidden Semi-Markov Model. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2005)
Ogris, G., Stiefmeieer, T., Lukowicz, P., Tröster, G.: Using a complex Multi-modal On-body Sensor System for Activity Spotting. In: Proceedings of the 12th IEEE International Symposium on Wearable Computers (ISWC) (2008)
Oliver, N., Horvitz, E.: A Comparison of HMMs and Dynamic Bayesian Networks for Recognizing Office Activities. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS, vol. 3538, pp. 199–209. Springer, Heidelberg (2005)
Ravi, N., Dandekar, N., Mysore, P., Littman, M.: Activity Recognition from Accelerometer Data. In: Proceedings of the 17th Conference on Innovative Applications of Artificial Intelligence (IAAI) (2005)
Wren, C.R., Tapia, E.M.: Toward Scalable Activity Recognition for Sensor Networks. In: Hazas, M., Krumm, J., Strang, T. (eds.) LoCA 2006. LNCS, vol. 3987, pp. 168–185. Springer, Heidelberg (2006)
Aghajan, H., Augusto, J.C., Wu, C., McCullagh, P., Walkden, J.A.: Distributed Vision-Based Accident Management for Assisted Living. In: Okadome, T., Yamazaki, T., Makhtari, M. (eds.) ICOST 2007. LNCS, vol. 4541, pp. 196–205. Springer, Heidelberg (2007)
Wang, S., Pentney, W., Popescu, A.M., Choudhury, T., Philipose, M.: Common Sense Based Joint Training of Human Activity Recognizers. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI) (2007)
Huynh, T., Blanke, U., Schiele, B.: Scalable Recognition of Daily Activities with Wearable Sensors. In: Hightower, J., Schiele, B., Strang, T. (eds.) LoCA 2007. LNCS, vol. 4718, pp. 50–67. Springer, Heidelberg (2007)
Minnen, D., Starner, T., Essa, I., Isbell, C.: Discovering Characteristic Actions from On-Body Sensor Data. In: Proceedings of the 10th IEEE International Symposium on Wearable Computers (ISWC) (2006)
Stikic, M., Laerhoven, K.V., Schiele, B.: Exploring Semi-Supervised and Active Learning for Activity Recognition. In: Proceedings of the 12th IEEE International Symposium on Wearable Computers (ISWC) (2008)
Anderson, B., Moore, A.: Active Learning for Hidden Markov Models: Objective Functions and Algorithms. In: Proceedings of the 22nd International Conference on Machine Learning (ICML) (2005)
Kapoor, A., Horvitz, E.: On Discarding, Caching, and Recalling Samples in Active Learning. In: Proceedings of the Conference on Uncertainty and Artificial Intelligence (UAI) (2007)
Kapoor, A., Horvitz, E.: Experience Sampling for Building Predictive User Models: A Comparative Study. In: Proceedings of the Conference on Human Factors in Computing Systems (CHI) (2008)
Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge (2006)
Guan, D., Yuan, W., Lee, Y.K., Gavrilov, A., Lee, S.: Activity Recognition Based on Semi-supervised Learning. In: Proceedings of the 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA) (2007)
Subramanya, A., Raj, A., Blimes, J., Fox, D.: Recognizing Activities and Spatial Context Using Wearable Sensors. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI) (2006)
Mahdaviani, M., Choudhury, T.: Fast and Scalable Training of Semi-Supervised CRFs with Application to Activity Recognition. In: Proceedings of the 21st Annual Conference on Neural Information Processing Systems (NIPS) (2007)
Hoey, J., Poupart, P., Boutilier, C., Mihailidis, A.: Semi-supervised learning of a pomdp model of patientcaregiver interactions. In: Proceedings of the IJCAI Workshop on Modeling Others from Observations (2005)
Zhou, Z.H.: Multi-Instance Learning: A Survey. Technical report, AI Lab, Department of Computer Science and Technology, Nanjing University (2004)
Andrews, S., Tsochantaridis, I., Hofmann, T.: Support Vector Machines for Multiple-Instance Learning. In: Proceedings of the 17th Annual Conference on Neural Information Processing Systems (NIPS) (2003)
Vapnik, V.: Statistical learning theory. Wiley and Sons, NY (1998)
Partridge, K., Golle, P.: On Using Existing Time-Use Study Data for Ubiquitous Computing Applications. In: Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp) (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stikic, M., Schiele, B. (2009). Activity Recognition from Sparsely Labeled Data Using Multi-Instance Learning. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds) Location and Context Awareness. LoCA 2009. Lecture Notes in Computer Science, vol 5561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01721-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-01721-6_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01720-9
Online ISBN: 978-3-642-01721-6
eBook Packages: Computer ScienceComputer Science (R0)