Skip to main content

Activity Inference through Sequence Alignment

  • Conference paper
Location and Context Awareness (LoCA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5561))

Included in the following conference series:

  • 1596 Accesses

Abstract

Activity inference attempts to identify what a person is doing at a given point in time from a series of observations. Since the 1980s, the task has developed into a fruitful research field and is now considered a key step in the design of many human-centred systems. For activity inference, wearable and mobile devices are unique opportunities to sense a user’s context unobtrusively throughout the day. Unfortunately, the limited battery life of these platforms does not always allow continuous activity logging. In this paper, we present a novel technique to fill in gaps in activity logs by exploiting both short- and long-range dependencies in human behaviour. Inference is performed by sequence alignment using scoring parameters learnt from training data in a probabilistic framework. Experiments on the Reality Mining dataset show significant improvements over baseline results even with reduced training and long gaps in data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dornbush, S., English, J., Oates, T., Segall, Z., Joshi, A.: XPod: A Human Activity Aware Learning Mobile Music Player. In: Proceedings of the Workshop on Ambient Intelligence, 20th International Joint Conference on Artificial Intelligence (IJCAI 2007) (January 2007)

    Google Scholar 

  2. Park, H.S., Yoo, J.O., Cho, S.B.: A context-aware music recommendation system using fuzzy bayesian networks with utility theory. In: Wang, L., Jiao, L., Shi, G., Li, X., Liu, J. (eds.) FSKD 2006. LNCS(LNAI), vol. 4223, pp. 970–979. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Stiefmeier, T., Roggen, D., Ogris, G., Lukowicz, P., Tröster, G.: Wearable activity tracking in car manufacturing. IEEE Pervasive Computing 7(2), 42–50 (2008)

    Article  Google Scholar 

  4. Ward, J.A., Lukowicz, P., Tröster, G., Starner, T.: Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1553–1567 (2006)

    Article  Google Scholar 

  5. Antifakos, S., Michahelles, F., Schiele, B.: Proactive instructions for furniture assembly. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 351–360. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Favela, J., Tentori, M., Castro, L.A., Gonzalez, V.M., Moran, E.B., Martínez-García, A.I.: Activity recognition for context-aware hospital applications: issues and opportunities for the deployment of pervasive networks. Mob. Netw. Appl. 12(2-3), 155–171 (2007)

    Article  Google Scholar 

  7. Sánchez, D., Tentori, M., Favela, J.: Activity recognition for the smart hospital. IEEE Intelligent Systems 23(2), 50–57 (2008)

    Article  Google Scholar 

  8. Lin, W., Sun, M.T., Poovandran, R., Zhang, Z.: Human activity recognition for video surveillance. In: IEEE International Symposium on Circuits and Systems, ISCAS 2008, May 2008, pp. 2737–2740 (2008)

    Google Scholar 

  9. McKenna, T.: Video surveillance and human activity recognition for anti-terrorism and force protection. In: AVSS 2003: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, Washington, DC, USA, p. 2. IEEE Computer Society, Los Alamitos (2003)

    Chapter  Google Scholar 

  10. Minnen, D., Westeyn, T., Ashbrook, D., Presti, P., Starner, T.: Recognizing soldier activities in the field. In: Body Sensor Networks, Aachen, Germany (2007)

    Google Scholar 

  11. Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Personal and Ubiquitous Computing 10(4), 255–268 (2006)

    Article  Google Scholar 

  12. Eagle, N., Pentland, A.: Eigenbehaviors: Identifying structure in routine. Proc. Roy. Soc. A (2006) (in submission)

    Google Scholar 

  13. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1948)

    Google Scholar 

  14. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: Contextphone: A prototyping platform for context-aware mobile applications. IEEE Pervasive Computing 4(2), 51–59 (2005)

    Article  Google Scholar 

  15. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  16. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

    Article  Google Scholar 

  17. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol. 162(3), 705–708 (1982)

    Article  Google Scholar 

  18. Farrahi, K., Gatica-Perez, D.: Daily routine classification from mobile phone data. In: Popescu-Belis, A., Stiefelhagen, R. (eds.) MLMI 2008. LNCS, vol. 5237, pp. 173–184. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Farrahi, K., Gatica-Perez, D.: What did you do today?: discovering daily routines from large-scale mobile data. In: MM 2008: Proceeding of the 16th ACM international conference on Multimedia, pp. 849–852. ACM, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choujaa, D., Dulay, N. (2009). Activity Inference through Sequence Alignment. In: Choudhury, T., Quigley, A., Strang, T., Suginuma, K. (eds) Location and Context Awareness. LoCA 2009. Lecture Notes in Computer Science, vol 5561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01721-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01721-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01720-9

  • Online ISBN: 978-3-642-01721-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics