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Preface

This work provides an introduction to the foundations of three-dimensional com-
puter vision and describes recent contributions to the field, which are of methodical
and application-specific nature. Each chapter of this work provides an extensive
overview of the corresponding state of the art, into which a detailed description of
new methods or evaluation results in application-specific systems is embedded.

Geometric approaches to three-dimensional scene reconstruction (cf. Chapter 1)
are primarily based on the concept of bundle adjustment, which has been developed
more than 100 years ago in the domain of photogrammetry. The three-dimensional
scene structure and the intrinsic and extrinsic camera parameters are determined
such that the Euclidean backprojection error in the image plane is minimised, usu-
ally relying on a nonlinear optimisation procedure. In the field of computer vision,
an alternative framework based on projective geometry has emerged during the last
two decades, which allows to use linear algebra techniques for three-dimensional
scene reconstruction and camera calibration purposes. With special emphasis on the
problems of stereo image analysis and camera calibration, these fairly different ap-
proaches are related to each other in the presented work, and their advantages and
drawbacks are stated. In this context, various state-of-the-art camera calibration and
self-calibration methods as well as recent contributions towards automated camera
calibration systems are described. An overview of classical and new feature-based,
correlation-based, dense, and spatio-temporal methods for establishing point cor-
respondences between pairs of stereo images is given. Furthermore, an analysis of
traditional and newly introduced methods for the segmentation of point clouds and
for the three-dimensional detection and pose estimation of rigid, articulated, and
flexible objects in the scene is provided.

A different class of three-dimensional scene reconstruction methods is made up
by photometric approaches (cf. Chapter 2), which evaluate the intensity distribution
in the image to infer the three-dimensional scene structure. Basically, these methods
can be divided into shape from shadow, photoclinometry and shape from shading,
photometric stereo, and shape from polarisation. As long as sufficient information
about the illumination conditions and the surface reflectance properties is available,
these methods may provide dense depth maps of object surfaces.
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In a third, fundamentally different class of approaches the behaviour of the point
spread function of the optical system used for image acquisition is exploited in or-
der to derive depth information about the scene (cf. Chapter 3). Depth from focus
methods use as a reference the distance between the camera and the scene at which
a minimum width of the point spread function is observed, relying on an appro-
priate calibration procedure. Depth from defocus methods determine the position-
dependent point spread function, which in turn yields absolute depth values for the
scene points. A semi-empirical framework for establishing a relation between the
depth of a scene point and the observed width of the point spread function is intro-
duced.

These three classes of approaches to three-dimensional scene reconstruction are
characterised by complementary properties, such that it is favourable to integrate
them into unified frameworks that yield more accurate and robust results than each
of the approaches alone (cf. Chapter 4). Bundle adjustment and depth from defocus
are combined to determine the absolute scale factor of the scene reconstruction re-
sult, which cannot be obtained by bundle adjustment alone if no a-priori information
is available. Shading and shadow features are integrated into a self-consistent frame-
work to reduce the inherent ambiguity and large-scale inaccuracy of the shape from
shading technique by introducing regularisation terms that rely on depth differences
inferred from shadow analysis. Another integrated approach combines photometric,
polarimetric, and sparse depth information, yielding a three-dimensional reconstruc-
tion result which is equally accurate on large and on small scales. An extension of
this method provides a framework for stereo image analysis of non-Lambertian sur-
faces, where traditional stereo methods tend to fail. In the context of monocular
three-dimensional pose estimation, the integration of geometric, photopolarimetric,
and defocus cues is demonstrated to behave more robustly and is shown to provide
significantly more accurate results than techniques exclusively relying on geometric
information.

The developed three-dimensional scene reconstruction methods are examined in
different application scenarios. A comparison to state-of-the-art systems is provided
where possible. In the context of industrial quality inspection (cf. Chapter 5), the
performance of pose estimation is evaluated for rigid objects (plastic caps, electric
plugs) as well as flexible objects (tubes, cables). The integrated surface reconstruc-
tion methods are applied to the inspection of different kinds of metallic surfaces,
where the achieved accuracies are found to be comparable to those of general-
purpose active scanning devices which, however, require a much higher instrumental
effort.

The developed techniques for object detection and tracking in three-dimensional
point clouds and for pose estimation of articulated objects are evaluated in the con-
text of partially automated industrial production scenarios requiring a safe interac-
tion between humans and industrial robots (cf. Chapter 6). An overview of existing
vision-based robotic safety systems is given, and it is worked out how the developed
three-dimensional detection and pose estimation techniques are related to state-of-
the-art gesture recognition methods in human–robot interaction scenarios.
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The third addressed application scenario is completely different and regards re-
mote sensing of the lunar surface by preparing elevation maps (cf. Chapter 7).
While the spatial scales taken into account differ by many orders of magnitude
from those encountered in the industrial quality inspection domain, the underly-
ing physical processes are fairly similar. An introductory outline of state-of-the-art
geometric, photometric, and combined approaches to topographic mapping of solar
system bodies is given. Especially the estimation of impact crater depths and shapes
is an issue of high geological relevance. Generally, such measurements are based on
the determination of shadow lengths and do not yield detailed elevation maps. It is
demonstrated for lunar craters that three-dimensional surface reconstruction based
on shadow, reflectance, and geometric information yields topographic maps of high
resolution, which are useful for a reliable crater classification. Another geologically
relevant field is the three-dimensional reconstruction of lunar volcanic edifices, es-
pecially lunar domes. These structures are so low that most of them do not appear
in the existing lunar topographic maps. Based on the described photometric three-
dimensional reconstruction methods, the first catalogue to date containing heights
and edifice volumes for a statistically significant number of lunar domes has been
prepared. It is outlined briefly why the determined three-dimensional morphometric
data are essential for deriving basic geophysical parameters of lunar domes, such as
lava viscosity and effusion rate, and how they may help to reveal their origin and
mode of formation.

Finally (cf. Chapter 8), the main results of the presented work and the most im-
portant conclusions are summarised, and possible directions of future research are
outlined.

Heroldstatt, May 2009 Christian Wöhler
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