Skip to main content

A Novel Least Distortion Linear Gain Model for Halftone Image Watermarking Incorporating Perceptual Quality Metrics

  • Chapter
Transactions on Data Hiding and Multimedia Security IV

Part of the book series: Lecture Notes in Computer Science ((TDHMS,volume 5510))

Abstract

In this paper, a least distortion approach is proposed for halftone image watermarking. The impacts of distortion and tonality problems in halftoning are analyzed. An iterative linear gain model is developed to optimize perceptual quality of watermarking halftone images with efficient computation complexity O(1). An optimum linear gain for data hiding error diffusion is derived and mapped into a standard linear gain model, with the tonality evaluated using the average power spectral density. As compared with Fu and Au’s data hiding error diffusion method, our experiments show that our proposed linear gain model can achieve an improvement of between 6.5% to 12% using weighted signal-to-noise ratio (WSNR) and an improvement of between 11% to 23% measured by visual image fidelity (VIF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ulichney, R.: Digital Halftoning. MIT Press, Cambridge (1987)

    Google Scholar 

  2. Petitcolas, F., Anderson, R., Kuhn, M.: Information hiding-a survey. IEEE Proceedings 87(7), 1062–1078 (1999)

    Article  Google Scholar 

  3. Fu, M.S., Au, O.C.: Data hiding watermarking for halftone images. IEEE Transactions on Image Processding 11(4) (2002)

    Google Scholar 

  4. Phil Sherry, A.S.: Improved techniques for watermarking halftone images. In: IEEE International Conference on Acoustics Speech and Signal Processing, vol. 8, pp. V1005–V1008 (2004)

    Google Scholar 

  5. Wu, C.W., Thompson, G., Stanich, M.: Digital watermarking and steganography via overlays of halftone images. Ibm research report, IBM Research Division,Thomas J. Watson Research Center, P.O. Box 218,Yorktown Heights, NY 10598 (2004)

    Google Scholar 

  6. Soo-Chang Pei, J.M.G.: High-capacity data hiding in halftone images using minimal-error bit searching and least-mean square filter. IEEE Transactions on Image Processing 15(6) (2006)

    Google Scholar 

  7. Baharav, Z., Shaked, D.: Watermarking of dither halftoned images. In: IS&T/SPIE Int. Conf. Security Watermark, Multimedia content 3657, pp. 307–316 (1999)

    Google Scholar 

  8. Hel-Or, H.: Watermarking and copyright labeling of printed images. J. Electron. Imaging 10(3), 794–803 (2001)

    Article  Google Scholar 

  9. Guo, J.M., Pei, S.C., Lee, H.: Paired subimage matching watermarking method on ordered dither images and its high-quality progressive coding. IEEE Transactions on Multimedia 10(1) (2008)

    Google Scholar 

  10. Kacker, D., Allebach, J.P.: Joint halftoning and watermarking. IEEE Transactions on Signal Processing 51(4) (2003)

    Google Scholar 

  11. Hsieh, C.T., Lu, Y.L., Luo, C.P., Kuo, F.J.: A study of enhancing the robustness of watermark. In: Proceedings of International Symposium on Multimedia Software Engineering, pp. 325–327 (2000)

    Google Scholar 

  12. Kite, T.D., Evans, B.L., Bovik, A.C.: Modeling and quality assessment of halftoning by error diffusion. IEEE Transactions on Image Processing 9(5) (2000)

    Google Scholar 

  13. Horowitz, P., Hill, W.: The art of Eletronics. Cambridge Univ. Press, Cambridge (1980)

    Google Scholar 

  14. Jarvis, J., Judice, C., Ninke, W.: A survey of techniques for the display of continuous tone pictures on bilevel displays. In: Comp. Graph. and Image Proc., vol. 5, pp. 13–40 (1976)

    Google Scholar 

  15. Floyd, R., Steinberg, L.: An adaptive algorithm for spatial grayscale. Proceedings of the Society for Information Display 17(2), 75–77 (1976)

    Google Scholar 

  16. Knox, K.: Error image in error diffusion. In: SPIE, Image Processing Algorithms and Techniques III, vol. 1657, pp. 268–279 (1992)

    Google Scholar 

  17. Williams, R.: Electrical Engineering Probability, 1st edn. West, St.Paul (1991)

    Google Scholar 

  18. University of S.: Surrey logo (2007), http://www.surrey.ac.uk/assets/images/surreylogo.gif

  19. Hamid Rahim Sheikh, A.C.B.: Image information and visual quality. IEEE Transactions on Image Processding 15(2) (2006)

    Google Scholar 

  20. Lfeachor, E.C., Jervis, B.W.: Digital Signal Processing: A Practical Approach, 1st edn. Addison-Wesley, Reading (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiang, W., Ho, A.T.S., Treharne, H. (2009). A Novel Least Distortion Linear Gain Model for Halftone Image Watermarking Incorporating Perceptual Quality Metrics. In: Shi, Y.Q. (eds) Transactions on Data Hiding and Multimedia Security IV. Lecture Notes in Computer Science, vol 5510. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01757-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01757-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01756-8

  • Online ISBN: 978-3-642-01757-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics