Skip to main content

Immediate Reward Reinforcement Learning for Clustering and Topology Preserving Mappings

  • Chapter
Similarity-Based Clustering

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5400))

Abstract

We extend a reinforcement learning algorithm which has previously been shown to cluster data. Our extension involves creating an underlying latent space with some pre-defined structure which enables us to create a topology preserving mapping. We investigate different forms of the reward function, all of which are created with the intent of merging local and global information, thus avoiding one of the major difficulties with e.g. K-means which is its convergence to local optima depending on the initial values of its parameters. We also show that the method is quite general and can be used with the recently developed method of stochastic weight reinforcement learning [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbakh, W.: Local versus Global Interactions in Clustering Algorithms. Ph.D thesis, School of Computing, University of the West of Scotland (2008)

    Google Scholar 

  2. Barbakh, W., Fyfe, C.: Clustering with reinforcement learning. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 507–516. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Bishop, C.M., Svensen, M., Williams, C.K.I.: Gtm: The generative topographic mapping. Neural Computation (1997)

    Google Scholar 

  4. Friedman, J.H.: Exploratory projection pursuit. Journal of the American Statistical Association 82(397), 249–266 (1987)

    Article  Google Scholar 

  5. Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers c-23(9), 881–889 (1974)

    Article  Google Scholar 

  6. Fyfe, C.: A scale invariant feature map. Network: Computation in Neural Systems 7, 269–275 (1996)

    Article  CAS  Google Scholar 

  7. Fyfe, C.: A comparative study of two neural methods of exploratory projection pursuit. Neural Networks 10(2), 257–262 (1997)

    Article  PubMed  Google Scholar 

  8. Fyfe, C.: Two topographic maps for data visualization. Data Mining and Knowledge Discovery 14, 207–224 (2007)

    Article  Google Scholar 

  9. Intrator, N.: Feature extraction using an unsupervised neural network. Neural Computation 4(1), 98–107 (1992)

    Article  Google Scholar 

  10. Jones, M.C., Sibson, R.: What is projection pursuit. Journal of The Royal Statistical Society, 1–37 (1987)

    Google Scholar 

  11. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  12. Kohonen, T.: Self-Organising Maps. Springer, Heidelberg (1995)

    Book  Google Scholar 

  13. Likas, A.: A reinforcement learning approach to on-line clustering. Neural Computation (2000)

    Google Scholar 

  14. Ma, X., Likharev, K.K.: Global reinforcement learning in neural networks with stochastic synapses. IEEE Transactions on Neural Networks 18(2), 573–577 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  16. Williams, R.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning 8, 229–256 (1992)

    Google Scholar 

  17. Williams, R.J., Pong, J.: Function optimization using connectionist reinforcement learning networks. Connection Science 3, 241–268 (1991)

    Article  Google Scholar 

  18. Zhang, B.: Generalized k-harmonic means – boosting in unsupervised learning. Technical report, HP Laboratories, Palo Alto (October 2000)

    Google Scholar 

  19. Zhang, B., Hsu, M., Dayal, U.: K-harmonic means - a data clustering algorithm. Technical report, HP Laboratories, Palo Alto (October 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fyfe, C., Barbakh, W. (2009). Immediate Reward Reinforcement Learning for Clustering and Topology Preserving Mappings. In: Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds) Similarity-Based Clustering. Lecture Notes in Computer Science(), vol 5400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01805-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01805-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01804-6

  • Online ISBN: 978-3-642-01805-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics