Skip to main content

Tracking Human Motion with Multiple Cameras Using an Articulated Model

  • Conference paper
Computer Vision/Computer Graphics CollaborationTechniques (MIRAGE 2009)

Abstract

This paper presents a markerless motion capture pipeline based on volumetric reconstruction, skeletonization and articulated ICP with hard constraints. The skeletonization produces a set of 3D points roughly distributed around the limbs’ medial axes. Then, the ICP-based algorithm fits an articulated skeletal model (stick figure) of the human body. The algorithm fits each stick to a limb in a hierarchical fashion, traversing the body’s kinematic chain, while preserving the connection of the sticks at the joints. Experimental results with real data demonstrate the performances of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moeslund, T., Hilton, A., Kruger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 103(2-3), 90–126 (2006)

    Article  Google Scholar 

  2. Brostow, G.J., Essa, I., Steedly, D., Kwatra, V.: Novel skeletal representation for articulated creatures. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, part III. LNCS, vol. 3023, pp. 66–78. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Ménier, C., Boyer, E., Raffin, B.: 3d skeleton-based body pose recovery. In: Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization and Transmission. Chapel Hill, USA (June 2006)

    Google Scholar 

  4. Anguelov, D., Koller, D., Pang, H.C., Srinivasan, P., Thrun, S.: Recovering articulated object models from 3D range data. In: Proc. of the 20th conference on Uncertainty in Artificial Intelligence, Arlington, Virginia, United States, pp. 18–26 (2004)

    Google Scholar 

  5. Knoop, S., Vacek, S., Dillmann, R.: Modeling joint constraints for an articulated 3D human body model with artificial correspondences in ICP. In: Proc. 5th IEEE-RAS International Conference on Humanoid Robots, pp. 74–79 (2005)

    Google Scholar 

  6. Mundermann, L., Corazza, S., Andriacchi, T.: Accurately measuring human movement using articulated ICP with soft-joint constraints and a repository of articulated models. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–6 (June 2007)

    Google Scholar 

  7. Martin, W.N., Aggarwal, J.K.: Volumetric descriptions of objects from multiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence 5(2), 150–158 (1983)

    Article  Google Scholar 

  8. Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L.: On-the-fly curve-skeleton computation for 3d shapes. Comput. Graph. Forum 26(3), 323–328 (2007)

    Article  Google Scholar 

  9. Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: SGP 2006: Proceedings of the fourth Eurographics symposium on Geometry processing, Aire-la-Ville, Switzerland, pp. 143–152 (2006)

    Google Scholar 

  10. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  11. Demirdjian, D., Ko, T., Darrell, T.: Constraining human body tracking. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, Washington, DC, USA, p. 1071 (2003)

    Google Scholar 

  12. Pellegrini, S., Schindler, K., Nardi, D.: A generalisation of the icp algorithm for articulated bodies. In: Proceedings of the British Machine Vision Conference (2008)

    Google Scholar 

  13. Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994)

    Article  Google Scholar 

  14. Li, M., Magnor, M., Seidel, H.P.: Hardware-accelerated visual hull reconstruction and rendering. In: Graphics Interface 2003, pp. 65–71 (2003)

    Google Scholar 

  15. Sigal, L., Black, M.: Humaneva: Synchronized video and motion capture dataset for evaluation of articulated human motion. Technical Report CS-06-08, Brown University, Department of Computer Science (2006)

    Google Scholar 

  16. Michoud, B., Guillou, E., Bouakaz, S.: Human model and pose Reconstruction from Multi-views. In: International Conference on Machine Intelligence (November 2005)

    Google Scholar 

  17. Everitt, C., Rege, A., Cebenoyan, C.: Hardware shadow mapping. In: ACM SIGGRAPH 2002 Tutorial Course no.31: Interactive Geometric Computations, pp. 38–51 (2002)

    Google Scholar 

  18. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton applications. In: IEEE Visualization Conference, pp. 95–102 (October 2005)

    Google Scholar 

  19. Telea, A., van Wijk, J.J.: An augmented fast marching method for computing skeletons and centerlines. In: VISSYM 2002: Proceedings of the symposium on Data Visualisation 2002, Aire-la-Ville, Switzerland, p. 251 (2002)

    Google Scholar 

  20. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image and Vision Computing 10(3), 145–155 (1992)

    Article  Google Scholar 

  21. Fusiello, A., Castellani, U., Ronchetti, L., Murino, V.: Model acquisition by registration of multiple acoustic range views. In: Proceedings of the European Conference on Computer Vision, pp. 805–819 (2002)

    Google Scholar 

  22. Schnemann, P., Carroll, R.: Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35(2), 245–255 (1970)

    Article  Google Scholar 

  23. Akca, D.: Generalized procrustes analysis and its applications in photogrammetry. Technical Report, ETH, Swiss Federal Institute of Technology Zurich, Institute of Geodesy and Photogrammetry (2003)

    Google Scholar 

  24. Kanatani, K.: Geometric Computation for Machine Vision. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  25. Rosenhahn, B., Brox, T., Kersting, U., Smith, A., Gurney, J., Klette, R.: A system for marker-less motion capture. Knstliche Intelligenz 20(1), 45–51 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moschini, D., Fusiello, A. (2009). Tracking Human Motion with Multiple Cameras Using an Articulated Model. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics CollaborationTechniques. MIRAGE 2009. Lecture Notes in Computer Science, vol 5496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01811-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01811-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01810-7

  • Online ISBN: 978-3-642-01811-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics