Abstract
This paper presents a markerless motion capture pipeline based on volumetric reconstruction, skeletonization and articulated ICP with hard constraints. The skeletonization produces a set of 3D points roughly distributed around the limbs’ medial axes. Then, the ICP-based algorithm fits an articulated skeletal model (stick figure) of the human body. The algorithm fits each stick to a limb in a hierarchical fashion, traversing the body’s kinematic chain, while preserving the connection of the sticks at the joints. Experimental results with real data demonstrate the performances of the algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Moeslund, T., Hilton, A., Kruger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 103(2-3), 90–126 (2006)
Brostow, G.J., Essa, I., Steedly, D., Kwatra, V.: Novel skeletal representation for articulated creatures. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, part III. LNCS, vol. 3023, pp. 66–78. Springer, Heidelberg (2004)
Ménier, C., Boyer, E., Raffin, B.: 3d skeleton-based body pose recovery. In: Proceedings of the 3rd International Symposium on 3D Data Processing, Visualization and Transmission. Chapel Hill, USA (June 2006)
Anguelov, D., Koller, D., Pang, H.C., Srinivasan, P., Thrun, S.: Recovering articulated object models from 3D range data. In: Proc. of the 20th conference on Uncertainty in Artificial Intelligence, Arlington, Virginia, United States, pp. 18–26 (2004)
Knoop, S., Vacek, S., Dillmann, R.: Modeling joint constraints for an articulated 3D human body model with artificial correspondences in ICP. In: Proc. 5th IEEE-RAS International Conference on Humanoid Robots, pp. 74–79 (2005)
Mundermann, L., Corazza, S., Andriacchi, T.: Accurately measuring human movement using articulated ICP with soft-joint constraints and a repository of articulated models. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–6 (June 2007)
Martin, W.N., Aggarwal, J.K.: Volumetric descriptions of objects from multiple views. IEEE Transactions on Pattern Analysis and Machine Intelligence 5(2), 150–158 (1983)
Sharf, A., Lewiner, T., Shamir, A., Kobbelt, L.: On-the-fly curve-skeleton computation for 3d shapes. Comput. Graph. Forum 26(3), 323–328 (2007)
Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: SGP 2006: Proceedings of the fourth Eurographics symposium on Geometry processing, Aire-la-Ville, Switzerland, pp. 143–152 (2006)
Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)
Demirdjian, D., Ko, T., Darrell, T.: Constraining human body tracking. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, Washington, DC, USA, p. 1071 (2003)
Pellegrini, S., Schindler, K., Nardi, D.: A generalisation of the icp algorithm for articulated bodies. In: Proceedings of the British Machine Vision Conference (2008)
Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16(2), 150–162 (1994)
Li, M., Magnor, M., Seidel, H.P.: Hardware-accelerated visual hull reconstruction and rendering. In: Graphics Interface 2003, pp. 65–71 (2003)
Sigal, L., Black, M.: Humaneva: Synchronized video and motion capture dataset for evaluation of articulated human motion. Technical Report CS-06-08, Brown University, Department of Computer Science (2006)
Michoud, B., Guillou, E., Bouakaz, S.: Human model and pose Reconstruction from Multi-views. In: International Conference on Machine Intelligence (November 2005)
Everitt, C., Rege, A., Cebenoyan, C.: Hardware shadow mapping. In: ACM SIGGRAPH 2002 Tutorial Course no.31: Interactive Geometric Computations, pp. 38–51 (2002)
Cornea, N.D., Silver, D., Min, P.: Curve-skeleton applications. In: IEEE Visualization Conference, pp. 95–102 (October 2005)
Telea, A., van Wijk, J.J.: An augmented fast marching method for computing skeletons and centerlines. In: VISSYM 2002: Proceedings of the symposium on Data Visualisation 2002, Aire-la-Ville, Switzerland, p. 251 (2002)
Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image and Vision Computing 10(3), 145–155 (1992)
Fusiello, A., Castellani, U., Ronchetti, L., Murino, V.: Model acquisition by registration of multiple acoustic range views. In: Proceedings of the European Conference on Computer Vision, pp. 805–819 (2002)
Schnemann, P., Carroll, R.: Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35(2), 245–255 (1970)
Akca, D.: Generalized procrustes analysis and its applications in photogrammetry. Technical Report, ETH, Swiss Federal Institute of Technology Zurich, Institute of Geodesy and Photogrammetry (2003)
Kanatani, K.: Geometric Computation for Machine Vision. Oxford University Press, Oxford (1993)
Rosenhahn, B., Brox, T., Kersting, U., Smith, A., Gurney, J., Klette, R.: A system for marker-less motion capture. Knstliche Intelligenz 20(1), 45–51 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moschini, D., Fusiello, A. (2009). Tracking Human Motion with Multiple Cameras Using an Articulated Model. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics CollaborationTechniques. MIRAGE 2009. Lecture Notes in Computer Science, vol 5496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01811-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-01811-4_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01810-7
Online ISBN: 978-3-642-01811-4
eBook Packages: Computer ScienceComputer Science (R0)