Skip to main content

Abstract

A systematic description of a novel physically-based virtual cloth simulation method using meshless models is carried out in this paper. This method is based upon continuum mechanics and discretized without explicit connections between nodes. The mechanical behavior of this cloth model is consistent and is independent of the resolution. Kirchhoff-Love (KL) thin shell theory is used as the basis of the cloth model. Approaches to the parametrization and boundary sewing problems are presented to suit with meshless models. Furthermore, a co-rotational method is proposed in order to take care of large deformation problems. As for the collision solution, a new shape-function-based collision detection method is developed for meshless parameterized surfaces. The experimental results show that our cloth simulation model based upon meshless methods can produce natural and realistic results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atluri, S.N., Shen, S.: The basis of meshless domain discretization: the meshless local Petrov-Galerkin (MLPG) method. Advances in Computational Mathematics 23, 79–93 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. J. 22, 117–127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH 1998: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 43–54. ACM Press, New York (1998)

    Chapter  Google Scholar 

  4. Chang, J., Zhang, J.: Mesh-free deformations. Computer Animation and Virtual Worlds 15(3-4), 211–218 (2004)

    Article  Google Scholar 

  5. Charfi, H., Gagalowicz, A., Brun, R.: Viscosity damping parameters of fabric related to a non-linear textile model. Textile Research Journal 76, 787–798 (2006)

    Article  Google Scholar 

  6. Cirak, F., Ortiz, M., Schroder, P.: Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering 47(12), 2039–2072 (2000)

    Article  MATH  Google Scholar 

  7. Etzmuβ, O., Keckeisen, M., Straβer, W.: A fast finite element solution for cloth modelling. In: PG 2003: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, Washington, DC, USA, p. 244. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  8. Guo, X., Li, X., Bao, Y., Gu, X., Qin, H.: Meshless thin-shell simulation based on global conformal parameterization. IEEE Trans. Vis. Comput. Graph 12(3), 375–385 (2006)

    Article  Google Scholar 

  9. Higham, N.J., Schreiber, R.S.: Fast polar decomposition of an arbitrary matrix. SIAM Journal on Scientific and Statistical Computing 11(4), 648–655 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Keckeisen, M.: Physical Cloth Simulation and Applications for the Visualization, Virtual Try-On, and Interactive Design of Garments. PhD thesis, Eberhard-Karls-Universitat Tubingen (2005)

    Google Scholar 

  11. Li, S., Qian, D., Liu, W.K., Belytschko, T.: A meshfree contact-detection algorithm. Computer Methods in Applied Mechanics and Engineering 190, 3271–3292 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. ACM Trans. Graph. 24(3), 957–964 (2005)

    Article  Google Scholar 

  13. Thomaszewski, B., Wacker, M., Straβer, W.: A consistent bending model for cloth simulation with corotational subdivision finite elements. In: SCA 2006: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, Aire-la-Ville, Switzerland, pp. 107–116. Eurographics Association (2006)

    Google Scholar 

  14. Yuan, W., Chen, P., Liu, K.: A new quasi-unsymmetric sparse linear systems solver for meshless local Petrov-Galerkin method (MLPG). CMES: Computer Modeling in Engineering & Sciences (Journal) 17(2), 115–134 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Yuan, W., Chen, Y., Liu, K., Gagalowicz, A.: Application of Meshless Local Petrov-Galerkin (MLPG) method in cloth simulation. CMES: Computer Modeling in Engineering & Sciences (Journal) 35(2), 133–156 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, W., Chen, Y., Gagalowicz, A. (2009). Meshless Virtual Cloth. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics CollaborationTechniques. MIRAGE 2009. Lecture Notes in Computer Science, vol 5496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01811-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01811-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01810-7

  • Online ISBN: 978-3-642-01811-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics