Abstract
In a previous ICFCA paper we have shown that, in the Description Logics \(\mathcal {EL}\) and \({\mathcal {EL}}_{\rm gfp}\), the set of general concept inclusions holding in a finite model always has a finite basis. In this paper, we address the problem of how to compute this basis efficiently, by adapting methods from formal concept analysis.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Proc. of IJCAI 2003, pp. 325–330. Morgan Kaufmann, San Francisco (2003)
Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proc. of ICJAI 2005, pp. 364–369. Morgan Kaufmann, San Francisco (2005)
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)
Baader, F., Distel, F.: Exploring finite models in the description logic \(\mathcal{EL}_\mathrm{gfp}\). LTCS-Report 08-05, Chair for Automata Theory, TU Dresden (2008)
Baader, F., Distel, F.: A finite basis for the set of \(\mathcal{EL}\)-implications holding in a finite model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 46–61. Springer, Heidelberg (2008)
Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic knowledge bases using formal concept analysis. In: Proc. of IJCAI 2007. AAAI Press/The MIT Press (2007)
Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for life science ontologies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 287–291. Springer, Heidelberg (2006)
Ganter, B.: Two basic algorithms in concept analysis. Preprint 831, Fachbereich Mathematik, TU Darmstadt, Darmstadt, Germany (1984)
Ganter, B.: Attribute exploration with background knowledge. Theoretical Computer Science 217(2), 215–233 (1999)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, New York (1997)
Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)
Prediger, S.: Logical scaling in formal concept analysis. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 332–341. Springer, Heidelberg (1997)
Rudolph, S.: Relational Exploration: Combining Description Logics and Formal Concept Analysis for Knowledge Specification. PhD thesis, Technische Universität Dresden (2006)
Spackman, K.A., Campbell, K.E., Cote, R.A.: SNOMED RT: A reference terminology for health care. J. of the American Medical Informatics Association, 640–644 (1997); Fall Symposium Supplement
Stumme, G.: Attribute exploration with background implications and exceptions. In: Bock, H.-H., Polasek, W. (eds.) Data Analysis and Information Systems, pp. 457–469. Springer, Berlin (1996)
The Gene Ontology Consortium. Gene Ontology: Tool for the unification of biology. Nature Genetics 25, 25–29 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baader, F., Distel, F. (2009). Exploring Finite Models in the Description Logic \({\mathcal {EL}}_{\rm gfp}\) . In: Ferré, S., Rudolph, S. (eds) Formal Concept Analysis. ICFCA 2009. Lecture Notes in Computer Science(), vol 5548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01815-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-01815-2_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01814-5
Online ISBN: 978-3-642-01815-2
eBook Packages: Computer ScienceComputer Science (R0)