Skip to main content

Two FCA-Based Methods for Mining Gene Expression Data

  • Conference paper
Formal Concept Analysis (ICFCA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5548))

Included in the following conference series:

Abstract

Gene expression data are numerical and describe the level of expression of genes in different situations, thus featuring behaviour of the genes. Two methods based on FCA (Formal Concept Analysis) are considered for clustering gene expression data. The first one is based on interordinal scaling and can be realized using standard FCA algorithms. The second method is based on pattern structures and needs adaptations of standard algorithms to computing with interval algebra. The two methods are described in details and discussed. The second method is shown to be more computationally efficient and providing more readable results. Experiments with gene expression data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stoughton, R.B.: Applications of DNA microarrays in biology. Annual Review of Biochemistry 74(1), 53–82 (2005)

    Article  Google Scholar 

  2. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: a survey. IEEE Trans. on Knowledge and Data Engineering 16(11), 1370–1386 (2004)

    Article  Google Scholar 

  3. Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)

    Article  Google Scholar 

  4. Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Buhlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

    Article  Google Scholar 

  5. Blachon, S., Pensa, R., Besson, J., Robardet, C., Boulicaut, J.F., Gandrillon, O.: Clustering formal concepts to discover biologically relevant knowledge from gene expression data. In Silico Biology 7(4–5), 467–483 (2007)

    Google Scholar 

  6. Kaytoue, M., Duplessis, S., Napoli, A.: Using formal concept analysis for the extraction of groups of co-expressed genes. In: An, L.T.H., Bouvry, P., Tao, P.D. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences (2008)

    Google Scholar 

  7. Motameny, S., Versmold, B., Schmutzler, R.: Formal concept analysis for the identification of combinatorial biomarkers in breast cancer. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 229–240. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. 8th International Conference on Intelligent Systems for Molecular Biology (ISBM), pp. 93–103 (2000)

    Google Scholar 

  9. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(suppl. 1), S136–S144 (2002)

    Article  Google Scholar 

  10. Robardet, C., Pensa, R.G., Besson, J., Boulicaut, J.-F.: Using classification and visualization on pattern databases for gene expression data analysis. In: Proceedings of the Intl. Workshop on Pattern Representation and Management, Heraklion, Hellas, March 18 (2004)

    Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  12. Choi, V., Huang, Y., Lam, V., Potter, D., Laubenbacher, R., Duca, K.: Using formal concept analysis for microarray data comparison. J. Bioinform. Comput. Biol. 6(1), 65–75 (2008)

    Article  Google Scholar 

  13. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS, vol. 2120, pp. 129–142. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Kuznetsov, S.O.: JSM-method as a machine learning method. Itogi Nauki i Tekhniki, ser. Informatika 15, 17–50 (1991)

    Google Scholar 

  15. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2-3), 189–216 (2002)

    Article  MATH  Google Scholar 

  16. Pensa, R.G., Besson, J., Boulicaut, J.F.: A methodology for biologically relevant pattern discovery from gene expression data. Discovery Science, 230–241 (2004)

    Google Scholar 

  17. Messai, N., Devignes, M.D., Napoli, A., Smaïl-Tabbone, M.: Many-valued concept lattices for conceptual clustering and information retrieval. In: 18th biennial European Conference on Artificial Intelligence (2008)

    Google Scholar 

  18. Chaudron, L., Maille, N.: Generalized formal concept analysis. In: International Conference on Conceptual Structures (ICCS), pp. 357–370 (2000)

    Google Scholar 

  19. Ferré, S., Ridoux, O.: A logical generalization of formal concept analysis. In: International Conference on Conceptual Structures (ICCS), pp. 371–384 (2000)

    Google Scholar 

  20. Martin, F.: The genome of laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452(7183), 88–92 (2008); 69 co-authors wrote this paper

    Article  Google Scholar 

  21. Busch, S., Braus, G.H.: How to build a fungal fruit body: from uniform cells to specialized tissue. Molecular Microbiology 64, 873–876 (2007)

    Article  Google Scholar 

  22. Lacourt, I., Duplessis, S., Abba, S., Bonfante, P., Martin, F.: Isolation and characterization of differentially expressed genes in the mycelium and fruit body of tuber borchii. Applied and Environmental Microbiology 68, 4574–4582 (2002)

    Article  Google Scholar 

  23. Gabella, S., Abba, S., Duplessis, S., Montanini, B., Martin, F., Bonfante, P.: Transcript profiling reveals novel marker genes involved in fruiting body formation in tuber borchii. Eukaryotic Cell 4, 1599–1602 (2005)

    Article  Google Scholar 

  24. Hsiao, C.J., Zaki, M.J.: Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Trans. on Knowl. and Data Eng. 17(4), 462–478 (2005)

    Article  Google Scholar 

  25. Szathmary, L.: Symbolic Data Mining Methods with the Coron Platform. PhD Thesis in Computer Science, Univ. Henri Poincaré – Nancy 1, France (November 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaytoue, M., Duplessis, S., Kuznetsov, S.O., Napoli, A. (2009). Two FCA-Based Methods for Mining Gene Expression Data. In: Ferré, S., Rudolph, S. (eds) Formal Concept Analysis. ICFCA 2009. Lecture Notes in Computer Science(), vol 5548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01815-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01815-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01814-5

  • Online ISBN: 978-3-642-01815-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics