Skip to main content

Generating Satisfiable SAT Instances Using Random Subgraph Isomorphism

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5549))

Included in the following conference series:

  • 1726 Accesses

Abstract

We report preliminary empirical results on Generating Satisfiable SAT instances using a variation of the Random Subgraph Isomorphism model. The experiments show that the model exhibits an easy-hard-easy pattern of empirical hardness. For both complete and incomplete solvers the hardness of the instances at the peak seems to increase exponentially with the instance size. The hardness of the instances generated by the model appears to be comparable with that of Quasigroup with Holes instances, known to be hard for Satisfiability solvers. A handful of state of the art SAT solvers we tested have different performances with respect to each other, when applied to these instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating satisfiable problem instances. In: Proceedings of AAAI 2000, pp. 256–261 (2000)

    Google Scholar 

  2. Clark, D.A., Frank, J., Gent, I.P., MacIntyre, E., Tomov, N., Walsh, T.: Local search and the number of solutions. In: Proceedings of CP 1996, pp. 119–133 (1996)

    Google Scholar 

  3. Achlioptas, D., Jia, H., Moore, C.: Hiding satisfying assignments: Two are better than one. In: Proceedings of AAAI 2004, pp. 131–136 (2004)

    Google Scholar 

  4. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: A simple model to generate hard satisfiable instances. In: Proceedings of IJCAI 2005, pp. 337–342 (2005)

    Google Scholar 

  5. The international sat competitions web page, http://www.satcompetition.org

  6. Chieu, H.: Finite energy survey propagation for constraint satisfaction problems (2007); Singapore MIT Alliance Symposium 2007

    Google Scholar 

  7. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust SAT-solver. In: Proceedings of DATE 2002, pp. 142–149 (2002)

    Google Scholar 

  8. Eén, N., Sörensson, N.: Minisat a sat solver with conflict-clause minimization. In: Proceedings of SAT 2005 (2005), http://minisat.se/Papers.html

  9. Biere, A.: Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation 4, 75–97 (2008)

    MATH  Google Scholar 

  10. Pipatsrisawat, K., Darwiche, A.: Rsat 2.0: Sat solver description. Technical Report D–153, Automated Reasoning Group, Computer Science Department, UCLA (2007)

    Google Scholar 

  11. Heule, M.J.H., van Maaren, H.: March-dl: Adding adaptive heuristics and a new branching strategy. Journal on Satisfiability, Boolean Modeling and Computation 2, 47–59 (2006)

    MATH  Google Scholar 

  12. Wei, W., Li, C.M., Zhang, H.: Switching among non-weighting, clause weighting, and variable weighting in local search for sat. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 313–326. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Pham, D.N., Thornton, J., Gretton, C., Sattar, A.: Combining adaptive and dynamic local search for satisfiability. Journal on Satisfiability, Boolean Modeling and Computation 4, 149–172 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anton, C., Olson, L. (2009). Generating Satisfiable SAT Instances Using Random Subgraph Isomorphism. In: Gao, Y., Japkowicz, N. (eds) Advances in Artificial Intelligence. Canadian AI 2009. Lecture Notes in Computer Science(), vol 5549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01818-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01818-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01817-6

  • Online ISBN: 978-3-642-01818-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics