Abstract
Statistical parsers that simultaneously generate both phrase-structure and lexical dependency trees have been limited to date in two important ways: detecting non-projective dependencies has not been integrated with other parsing decisions, and/or the constraints between phrase-structure and dependency structure have been overly strict. We introduce context-free filtering grammar as a generalization of a lexicalized factored parsing model, and develop a scoring model to resolve parsing ambiguities for this new grammar formalism. We demonstrate the new model’s flexibility by implementing a statistical parser for German, a freer-word-order language exhibiting a mixture of projective and non-projective syntax, using the TüBa-D/Z treebank [1].
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Telljohann, H., Hinrichs, E.W., Kübler, S., Zinsmeister, H.: Stylebook for the Tübingen treebank of written German (TüBa-D/Z). Technical report, Seminar für Sprachwissenschaft, Universität Tübingen, Germany (2005)
Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural language parsing. In: 16th NIPS, pp. 3–10 (2002)
McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of dependency parsers. In: 43rd ACL, pp. 91–98 (2005)
Briscoe, T., Carroll, J.: Evaluating the accuracy of an unlexicalized statistical parser on the parc depbank. In: 44th ACL, pp. 41–48 (2006)
McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency parsing using spanning tree algorithms. In: HLT/EMNLP, pp. 523–530 (2005)
Crammer, K., Dekel, O., Singer, Y., Shalev-Shwartz, S.: Online passive-aggressive algorithms. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16, pp. 1229–1236. MIT Press, Cambridge (2004)
Collins, M.: Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. In: EMNLP, pp. 1–8 (2002)
Kübler, S., Hinrichs, E.W., Maier, W.: Is it really that difficult to parse German? In: EMNLP, pp. 111–119 (2006)
Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: 41st ACL, pp. 423–430 (2003)
Black, E., Abney, S., Flickenger, S., Gdaniec, C., Grishman, C., Harrison, P., Hindle, D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S., Santorini, B., Strzalkowski, T.: Procedure for quantitatively comparing the syntactic coverage of English grammars. In: HLT, pp. 306–311 (1991)
Taskar, B., Klein, D., Collins, M., Koller, D., Mannning, C.: Max-margin parsing. In: EMNLP, pp. 1–8 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Demko, M., Penn, G. (2009). Statistical Parsing with Context-Free Filtering Grammar. In: Gao, Y., Japkowicz, N. (eds) Advances in Artificial Intelligence. Canadian AI 2009. Lecture Notes in Computer Science(), vol 5549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01818-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-01818-3_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01817-6
Online ISBN: 978-3-642-01818-3
eBook Packages: Computer ScienceComputer Science (R0)