Skip to main content

Statistical Parsing with Context-Free Filtering Grammar

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5549))

Included in the following conference series:

  • 1696 Accesses

Abstract

Statistical parsers that simultaneously generate both phrase-structure and lexical dependency trees have been limited to date in two important ways: detecting non-projective dependencies has not been integrated with other parsing decisions, and/or the constraints between phrase-structure and dependency structure have been overly strict. We introduce context-free filtering grammar as a generalization of a lexicalized factored parsing model, and develop a scoring model to resolve parsing ambiguities for this new grammar formalism. We demonstrate the new model’s flexibility by implementing a statistical parser for German, a freer-word-order language exhibiting a mixture of projective and non-projective syntax, using the TüBa-D/Z treebank [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Telljohann, H., Hinrichs, E.W., Kübler, S., Zinsmeister, H.: Stylebook for the Tübingen treebank of written German (TüBa-D/Z). Technical report, Seminar für Sprachwissenschaft, Universität Tübingen, Germany (2005)

    Google Scholar 

  2. Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural language parsing. In: 16th NIPS, pp. 3–10 (2002)

    Google Scholar 

  3. McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of dependency parsers. In: 43rd ACL, pp. 91–98 (2005)

    Google Scholar 

  4. Briscoe, T., Carroll, J.: Evaluating the accuracy of an unlexicalized statistical parser on the parc depbank. In: 44th ACL, pp. 41–48 (2006)

    Google Scholar 

  5. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency parsing using spanning tree algorithms. In: HLT/EMNLP, pp. 523–530 (2005)

    Google Scholar 

  6. Crammer, K., Dekel, O., Singer, Y., Shalev-Shwartz, S.: Online passive-aggressive algorithms. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16, pp. 1229–1236. MIT Press, Cambridge (2004)

    Google Scholar 

  7. Collins, M.: Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. In: EMNLP, pp. 1–8 (2002)

    Google Scholar 

  8. Kübler, S., Hinrichs, E.W., Maier, W.: Is it really that difficult to parse German? In: EMNLP, pp. 111–119 (2006)

    Google Scholar 

  9. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: 41st ACL, pp. 423–430 (2003)

    Google Scholar 

  10. Black, E., Abney, S., Flickenger, S., Gdaniec, C., Grishman, C., Harrison, P., Hindle, D., Ingria, R., Jelinek, F., Klavans, J., Liberman, M., Marcus, M., Roukos, S., Santorini, B., Strzalkowski, T.: Procedure for quantitatively comparing the syntactic coverage of English grammars. In: HLT, pp. 306–311 (1991)

    Google Scholar 

  11. Taskar, B., Klein, D., Collins, M., Koller, D., Mannning, C.: Max-margin parsing. In: EMNLP, pp. 1–8 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demko, M., Penn, G. (2009). Statistical Parsing with Context-Free Filtering Grammar. In: Gao, Y., Japkowicz, N. (eds) Advances in Artificial Intelligence. Canadian AI 2009. Lecture Notes in Computer Science(), vol 5549. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01818-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01818-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01817-6

  • Online ISBN: 978-3-642-01818-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics