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Summary. Modularity of ontologies is currently an active research field, and many
different notions of a module have been proposed. In this paper, we review the
fundamental principles of modularity and identify formal properties that a robust
notion of modularity should satisfy. We explore these properties in detail in the
contexts of description logic and classical predicate logic and put them into the
perspective of well-known concepts from logic and modular software specification
such as interpolation, forgetting and uniform interpolation. We also discuss reasoning
problems related to modularity.

1 Introduction

The benefits of modular ontologies are manifold. In ontology design, modu-
larity supports the structured and controlled development of large ontologies,
enables ontology design by multiple, possibly distributed designers and allows
the re-use of (parts of) already existing ontologies. In ontology deployment
and usage, modularity can be exploited for right-sizing large ontologies (by
selecting and using only the relevant part) and to speed up reasoning. Alas,
making full use of modularity is hampered by the fact that there are many
different definitions of what a module in an ontology actually is. In fact, it
seems unlikely that there can be a unique and generally accepted such defi-
nition because the desirable properties of a module strongly depends on the
intended application.

In this paper, our aim is to provide guidance for choosing the right notion
of modularity. In particular, we give a survey of possible options and identify
three formal properties that a notion of modularity may or may not enjoy and
that can be used to evaluate the robustness of this notion in the context of
a given application. We analyze whether the surveyed notions of modularity
satisfy these robustness properties and provide further guidance by discussing
the computational complexity of central decision problems associated with
modularity.
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To make different notions of modularity comparable to each other, we
have to agree on some general framework for studying ontologies and mod-
ules. Generally speaking, a module is a part of a complex system that functions
independently from this system. To define what a module in an ontology is,
we thus have to specify what it means for such a module to function indepen-
dently from the containing ontology. It is not a priori obvious how this can be
done. We start with adopting the following, abstract view of an ontology: an
ontology O can be regarded as a black box that provides answers to queries
about some vocabulary S of interest. The form that such queries take is one
of the main distinguishing factors between different applications. Important
cases include the following.
Classification. Classifying an ontology means to compute the sub-/superclass
relationships between all atomic classes in the ontology. For example, if S is a
vocabulary for buildings and architecture, then the query Church v Building
asks whether every church is a building.
Subsumption queries. In other applications, one is interested in computing
subsumption between complex class expressions. For example, if S is a bio-
logical vocabulary, then the query Father v Living being u ∃has child.> asks
whether every father is a living being having a child.
Instance data. A popular application of ontologies is their use for providing a
background theory when querying instance data. In this case, one is interested
in instance queries that are posed to a knowledge base, which consists of an
ontology and an ABox that stores instances of classes and relations. Note
that we do not consider the ABox to be part of the ontology. To represent
this setup in terms of queries posed to the ontology, we consider queries that
consist of an instance query together with an ABox. For example, if S is a
geographical vocabulary, then a query might consist of the instance data

A = {Country(France),Country(Columbia), . . . , LocatedinEurope(France), . . .}

together with the conjunctive query EuropeanCountry(France). This query asks
whether it follows from the instance data A and the ontology that France is a
European country. The answer is yes if, for example, the ontology states that
every country LocatedinEurope is a EuropeanCountry.
These examples show that, to define what it means for a part of an ontology
to “function independently”, we first have to fix a query language and a
vocabulary of interest. Once this is done, two ontologies can be regarded
equivalent if they give the same answers to all queries that can be built in the
fixed query language with the fixed vocabulary. Similarly, given an ontology
and its module, we can say that the module functions independently from the
ontology if any query built in the fixed query language with the vocabulary
associated with the module has the same answer when querying the module
and the whole ontology.

Formally, these ideas can be captured by the concept of inseparability :
given a query language QL and a vocabulary S, two ontologies O1 and O2 are
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S-inseparable w.r.t. QL if they give the same answers to queries in QL over S.
There are various ways in which this notion can be used to define modularity
of ontologies. For example, one can use the notion of inseparability to define
a module as a subset of an ontology that is S-inseparable (and thus functions
independently) from the whole ontology w.r.t. a query language QL and for a
signature S associated with the module. In this case, investigations into mod-
ularity boil down to investigating conservative extensions as the special case
of S-inseparability in which one ontology is a subset of the other ontology and
the vocabulary S coincides with the vocabulary of the smaller ontology [14].
Another, differently flavoured approach is to use triples (O,QL, S) as a mod-
ule, where O is an ontology, QL a query language and S a vocabulary. The
pair (QL, S) serves as an interface so that groups of independent modules
can interact by querying each other via this interface. This setup is similar
in spirit to formalisms such as DDLs and E-Connections [32, 18, 45, 4, 6]. In
this case, S-inseparability is fundamental because it allows to define what it
means that one module is equivalent to another one.

Since inseparability is at the core of most notions of modularity, our frame-
work for studying and comparing such notions puts inseparability (and, as
a variant, conservative extensions) into its focus. The robustness properties
mentioned above are formulated directly in terms of inseparability. Here, the
term “robustness” refers to the ramifications of changing the signature and
manipulating in certain natural ways the involved ontologies. In particular,
the properties ensure that modules and ontologies can be composed and de-
composed in a transparent way. Our robustness properties are closely related
to well-known notions from logic, in particular to interpolation and the Robin-
son joint consistency property. We explore this connection and also investigate
the relation between inseparability on the one hand, and forgetting and uni-
form interpolation on the other. In principle, the general ideas presented in
this paper are independent of the ontology language and query language that
are used. To analyze robustness properties in concrete cases, though, we obvi-
ously have to fix both languages. As an ontology language, we mainly consider
description logics (DLs), which are a highly relevant in this context due to
the standardisation of the DL-based ontology language OWL by the W3C [5].
To round off our presentation, we will sometimes also give examples in terms
of first- and second-order logic. We consider a wide range of query languages
including classification queries, subsumption queries, instance queries, con-
junctive queries and first- and second-order queries.

The rest of this paper is organised as follows. In Section 2, we introduce on-
tology languages and description logics. In Section 3, we define our framework
for inseparability and introduce relevant robustness properties that notions of
inseparability should enjoy. A variety of query languages together with the
resulting robustness properties and decision problems are discussed in Sec-
tion 5. A detailed investigation of robustness properties and their relation to
interpolation is provided in Section 6. In Section 7 we explore the connection
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Name Syntax Semantics

top concept > ∆I

bottom concept ⊥ ∅
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD ¬(¬C u ¬D)I

existential restriction ∃r.C {d ∈ ∆I | ∃e ∈ CI : (d, e) ∈ rI}
universal restriction ∀r.C ¬(∃r.¬C)I

Table 1. Syntax and semantics of ALC.

between inseparability and forgetting/uniform interpolation and establish a
number of results regarding the existence of uniform interpolants and ontolo-
gies that “forget” certain symbols from a given ontology. Finally, we devote
Section 8 to surveying results on lightweight DLs and acyclic ontologies. We
finish with a brief discussion in Section 9.

2 Ontology Languages and Description Logics

We introduce a number of description logics, fix conventions for handling
first- and second-order logic and give a number of basic definitions concerning
signatures. The DL-literate reader may choose to skip this section.

2.1 The Description Logic ALC

In DLs, ontologies are sets of implications between concepts, sometimes en-
riched with additional types of constraints. Thus, we start this section with
introducing concepts, which are inductively defined from a set NC of concept
names and a set NR of role names, using a set of concept constructors. From
the perspective of first-order logic, concept names are unary predicates and
role names are binary relations. Different sets of concept constructors give rise
to different DLs.

In this paper, we will mainly be concerned with the description logic ALC
and its extensions. The concept constructors available in ALC are shown in
Table 1, where r denotes a role name and C and D denote concepts. A concept
built from these constructors is called an ALC-concept. A concept implication
is an expression of the form C v D, with C and D concepts. We write C ≡ D
instead of the two concept implications C v D and D v C.

Definition 1 (ALC-Ontology). An ALC-ontology is a finite set of concept
implications. ALC-ontologies will also be called ALC-TBoxes.
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Some of the applications discussed in this paper are concerned not only with
ontologies, but also with instance data. In DLs, such instance data is described
using ABoxes. To introduce ABoxes, we fix a set NI of individual names,
which correspond to constants in first-order logic. Then, an assertion is an
expression of the form C(a) or r(a, b), where C is a concept, r a role name
and a, b are individual names. An ALC-ABox is a finite set of assertions. We
call the combination K = (O,A) of an ALC-ontology and an ALC-ABox an
ALC-knowledge base.

DL semantics is based on the notion of an interpretation I = (∆I , ·I).
The domain ∆I is a non-empty set and the interpretation function ·I maps
each concept name A ∈ NC to a subset AI of ∆I , each role name r ∈ NR to
a binary relation rI on ∆I and each individual name a ∈ NI to an individual
aI ∈ ∆I . The extension of ·I to arbitrary concepts is defined inductively as
shown in the third column of Table 1.

The semantics of ALC-ontologies is now defined as follows. An interpreta-
tion I satisfies a concept implication C v D if CI ⊆ DI , and I is a model of
an ontology O if it satisfies all implications in O. An ontology is consistent if
it has a model. A concept C is satisfiable w.r.t. an ontology O if there exists
a model I of O such that CI 6= ∅. A concept C is subsumed by a concept D
w.r.t. an ontology O (written O |= C v D) if every model I of O satisfies the
implication C v D.

Now for the semantics of ABoxes and knowledge bases. An interpretation
I satisfies an assertion C(a) if aI ∈ CI , and r(a, b) if (aI , bI) ∈ rI . It is a
model of an ABox A if it satisfies all assertions in A and of a knowledge base
K = (O,A) if it is a model of both O and A. We say that A is consistent if
it has a model, and likewise for K.

When working with ontologies and without ABoxes, the most relevant way
of querying is subsumption: given an ontology O and concepts C,D, check
whether O |= C v D. In the presence of ABoxes, there are two prominent
ways of querying: instance checking and conjunctive query answering; see,
e.g., [24, 12, 11]. Instance checking means, given a knowledge base K and an
assertion C(a), to check whether each model of K satisfies C(a). If this is the
case, we write K |= C(a).

Example 1. Let O be a geographical ontological defined as

O = {European Country ≡ Country u Located in Europe}

and A an ABox defined as

A = {Country(France),Country(Columbia), . . . , Located in Europe(France), . . .}.

Then (O,A) |= European Country(France).

To discuss conjunctive query answering, we need a few preliminaries. An
atom is of the form C(v) or r(v, v′), where v, v′ are from a set of variables
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NV, C is a concept and r is a role name. An ALC-conjunctive query is an
expression of the form ∃v.ϕ(u,v), where v and u are disjoint sequences of
variables and ϕ is a conjunction of atoms using only variables from v∪u (we
confuse vectors and sets when convenient). The arity of such a query is the
length of u. The variables in u are the answer variables of q, and the ones in
v are the (existentially) quantified variables. Let K be a knowledge base and
q = ∃v.ϕ(u,v) an n-ary conjunctive query. Then a sequence a of individual
names of length n is a certain answer to K and q if for every model I of K,
there is a mapping π : v ∪ u→ ∆I such that

• if v is the i-th element of u and a the i-th element of a, then π(v) = aI ;
• C(v) ∈ ϕ implies π(v) ∈ CI , and r(v, v′) ∈ ϕ implies (π(v), π(v′)) ∈ rI .

Then, conjunctive query answering means to compute, given a knowledge base
K and conjunctive query q, all certain answers to K and q.

For our purposes, it usually suffices to work with an instantiated conjunc-
tive query ∃v.ϕ(a,v), in which the answer variables have been replaced with
individual names. We write K |= ∃v.ϕ(a,v) if a is a certain answer to the
query ∃v.ϕ(u,v).

2.2 First- and second-order Logic

We use standard notation for first- and second-order logic. Throughout the
paper, we admit individual constants, truth constants > and ⊥, a binary
equality symbol ‘=’ and an arbitrary number of predicates of any arity. Func-
tion symbols are not admitted. A first-order ontology, or FO-ontology for
short, is simply a finite set of first-order sentences. As usual, we write O |= ϕ
if a first-order sentence ϕ is a consequence of an FO-ontology O.

We will often view an ALC-ontology as an FO-ontology. Indeed, it is well-
known that most DLs such as ALC can be conceived as (decidable) fragments
of first-order logic [3]. Note that a DL interpretation is just a first-order in-
terpretation restricted to only unary and binary predicates and constants.
Then, (i) concepts correspond to formulas in one free variable, (ii) concept
implications and ABox assertions correspond to sentences and (iii) ontologies,
ABoxes and knowledge bases correspond to first-order theories.

In what follows, we use C] to denote the standard translation of an ALC-
concept C into an FO-formula with one free variable x; see [3]. Thus, we have
A] = A(x) for every concept name A and, inductively,

>] = x = x

⊥] = ¬(x = x)

(C1 u C2)] = C]1 ∧ C
]
2

(¬C)] = ¬C]

(∃r.C)] = ∃y (r(x, y) ∧ C][x/y])
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where, in the last clause, y is a fresh variable. Then we can translate an
ontology O into a corresponding FO-ontology

O] :=
{
∀x
(
C](x)→ D](x)

)
| C v D ∈ O

}
.

Thus, subsumption in ALC can be understood in terms of FO-consequence:
for all ALC-concepts C,D, we have O |= C v D iff O] |= ∀x.(C] → D]). We
can translate a knowledge base K into an FO-ontology K] in a similar way,
using individual constants. Then, instance checking and checking whether a
tuple a is a certain answer to a conjunctive query can also be understood as
first order consequence.

Example 2. Let
O = {Father ≡ Male u ∃has child.>}

define a father as a male who has a child. Then

O] = {∀x (Father(x)↔ (Male(x) ∧ ∃y has child(x, y)))}.

Second-order logic extends first-order logic by means of quantification over
variables P for sets and relations. An SO-ontology O is a finite set of SO-
sentences. We write O |= ϕ if a second-order sentence ϕ follows from an
SO-ontology O. Clearly, every FO-ontology is an SO-ontology as well.

2.3 Signatures

The notion of a signature plays an important role in this paper. In a nut-
shell, a signature is a finite set of extra-logical symbols, i.e., symbols whose
interpretation is not fixed a priori by the semantics. In the context of DLs,
a signature may contain concept names, role names and individual names.
Logical symbols such as the truth constants ⊥, > and the Boolean operators
u and ¬ are not part of a signature. In the context of first- and second-order
logic, a signature consists of predicate symbols (except equality) and individ-
ual constants. The equality symbol is not included because its interpretation
is fixed a priori.

The signature sig(O) of an ALC-ontology O is the set of concept and role
names that occur in O, and likewise for the signature sig(C) of a concept C
and sig(C v D) of a concept inclusion C v D. For example,

sig({> v ∃r.B u ∀r.⊥}) = {B, r}.

The signature sig(α) of an ABox assertion α, sig(A) of an ABox A and sig(K)
of a knowledge base K is defined similarly, but additionally includes all occur-
ring individual names.

The signature sig(ϕ) of a first- or second-order formula ϕ is the set of
all predicate and constant symbols (except equality) used in ϕ. Note that
sig(∀P.ϕ) = sig(∃P.ϕ) = sig(ϕ) for every SO-formula ϕ. This notion is lifted
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Name Syntax Semantics Identifier

number restrictions (6 n r C) {d | #{e | (d, e) ∈ rI ∧ e ∈ CI} ≤ n} Q
(> n r C) {d | #{e | (d, e) ∈ rI ∧ e ∈ CI} ≥ n}

nominals {a} {aI} O

inverse role r− (rI)−1 I
universal role u ∆I ×∆I U

role inclusions r v s rI ⊆ sI H
Table 2. Additional constructors: syntax and semantics.

to ontologies in the obvious way. For an SO-sentence ϕ and a relation symbol
S we sometimes write ∃S.ϕ instead of ∃P.ϕ[P/S], where P is a variable for
relations of the same arity as S and ϕ[P/S] results from ϕ by replacing S by
P . Clearly, sig(∃S.ϕ) = sig(ϕ) \ {S}.

In this paper, we are often interested in concepts and ontologies that are
formulated using a specific signature. Therefore, we talk of an S-ontology O
if sig(O) ⊆ S, and likewise for S-concepts, etc. When we want to emphasise
both the DL L in which an ontology is formulated and the signature S, we
talk about LS-ontologies.

2.4 Some Extensions of ALC

We introduce here the most important extensions of ALC used in this paper.
Some additional extensions (and fragments) are introduced as needed. The
extensions considered here fall into three categories: (i) additional concept
constructors, (ii) additional roles and (iii) additional statements in TBoxes.
The extensions are listed in Table 2, where #X denotes the size of a set X and
double horizontal lines mark the border between extensions of type (i), (ii)
and (iii), from top to bottom. The last column lists the identifier for each
extension, which is simply appended to the name ALC. For example, ALC
extended with number restrictions and inverse roles is denoted by ALCQI
and the extension of a DL L with the universal role is denoted by LU .

In the following, we only give some remarks regarding the listed extensions
and refer the reader to the DL literature for more details [3]. When inverse
roles are present, they can be used inside existential and universal restrictions,
and also inside number restrictions (if present) and role inclusions (if present).
In contrast, the universal role u is only allowed inside existential and universal
restrictions. We remark that the universal role is less common than the other
extensions of ALC, but it will play a prominent role in this paper.

Some care is required for defining the signature in extensions of ALC. If
we work with a description logic L that includes nominals, then signatures
(of concepts, ontologies, ABoxes, etc.) include also the individual names a
occurring as a nominal {a}. For example, the signature of the ALCO-ABox
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{(A u ∃r.{a})(b)} is {A, r, a, b}. In contrast to nominals, the universal role is
regarded as a logical symbol and is not part of the signature. This is justified
by the fact that the interpretation of the universal role u is fixed a priori. Note
also that for its translation (∃u.D)] = ∃x.D] to first-order logic, no relation
symbol is required.

3 Inseparability and Conservative Extensions

We lay the foundation of the general framework that we use to study modu-
larity. This framework consists of conventions that fix (in a rather liberal way)
what an ontology, an ontology language, a query, and a query language is, and
of the fundamental notions that we use to define modularity: S-inseparability
and S-conservative extensions. We also introduce the relevant decision prob-
lems associated with S-inseparability and S-conservative extensions.

3.1 Basic Notions and Conventions

For us, an ontology is a finite set of second-order sentences, an ontology lan-
guage is a (commonly infinite) set of second-order sentences, a query is a
second-order sentence, and a query language is a (finite or infinite) set of
queries. By the first-order translations given in Section 2, this view captures
ontologies and query languages based on DLs. Observe that ontology lan-
guages and query languages are defined in the same way, and we will often
make use of that. We now define the core notions for defining modularity.

Definition 2 (Inseparability and Conservative Extension). Let QL be
a query language, O1,O2 ontologies and S a signature. We say that

• O1 and O2 are S-inseparable w.r.t. QL and write O1 ≈QLS O2 iff for all
ϕ ∈ QL with sig(ϕ) ⊆ S, we have O1 |= ϕ iff O2 |= ϕ.

• O2 is an S-conservative extension of O1 w.r.t. QL iff O2 ⊇ O1 and O1

and O2 are S-inseparable w.r.t. QL. If, in addition, S = sig(O1), then we
say that O2 is a conservative extension of O1 w.r.t. QL.

We say that ϕ ∈ QL separates O1 and O2 iff O1 |= ϕ and O2 6|= ϕ or vice
versa.

Observe that if O1 ⊆ O2 are formulated in first-order logic and QL consists
of all first-order sentences, then our definition of a conservative extension
w.r.t. QL coincides with the standard definition of a conservative extension
used in mathematical logic [14].

For any query language QL and any signature S, the relation ≈QLS of
S-inseparability w.r.t. QL is clearly an equivalence relation. Moreover, the
following two implications are easily seen to hold:

1. if O1 ≈QLS O2 and S′ ⊆ S, then O1 ≈QLS′ O2;
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2. if O1 ≈QLS O2 and QL′ ⊆ QL, then O1 ≈QL
′

S O2.

The largest query language QL considered in this paper is QLSO, the set of
sentences of second-order logic. It follows from Point 2 above that insepara-
bility w.r.t. QLSO implies inseparability w.r.t. any other query language that
fits into our framework.

3.2 Examples

We give several examples that illustrate the importance of S-inseparability
and conservative extensions for handling ontologies in general and for defining
notions of modularity in particular. For simplicity, we concentrate on the
rather expressive query language QLSO for now and defer the introduction of
DL-based query languages to the subsequent section.

Example 3. The following ontology defines the binary relation P (‘part of’) as
a transitive and reflexive relation:

O1 = { ∀xP(x, x),
∀x∀y∀z (P(x, y) ∧ P(y, z)→ P(x, z)) }

We now define another ontology that also defines P, but which does this in
terms of another binary relation PP (‘proper part of’) that is transitive and
irreflexive:

O2 = { ∀x ¬PP(x, x),
∀x∀y∀z (PP(x, y) ∧ PP(y, z)→ PP(x, z)),
∀x∀y (P(x, y)↔ (x = y ∨ PP(x, y)) }.

Suppose that the ontology O2 is used in an application that refers only the
predicate P (but not PP) and is based on the query language QL. Can we re-
place O2 with the somewhat simpler ontology O1 without causing any changes
or even corruption? In our framework, answering this question means check-
ing whether or not O1 and O2 are {P}-inseparable w.r.t. QLSO. The answer
is ‘no’: the QLSO-sentence

ϕ = ∀x∀y ((P(x, y) ∧ P(y, x))→ x = y)

separates O1 and O2 since O1 6|= ϕ and O2 |= ϕ. While O1 and O2 are toy on-
tologies, questions of this kind are of obvious importance for real applications.
To conclude this example, we remark that O1 and O2 become {P}-inseparable
w.r.t. QLSO by adding ϕ to O1.

Example 4. According to the introduction, a module should function indepen-
dently from the containing ontology and conservative extensions can capture
this. Thus, let us use conservative extensions to give an example definition of
a module.
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Definition 3. Let O1 ⊆ O2 be ontologies, S a signature, and QL a query lan-
guage. Then O1 is a weak S-module of O2 w.r.t. QL if O2 is an S-conservative
extension of O1 w.r.t. QL.

As a concrete example, consider the ALC-ontology

O1 = { Male ≡ Human u ¬Female,

Human v ∀has child.Human }

and its extension

O2 = O1 ∪ {Father ≡ Male u ∃has child.>}.

If S = sig(O1), then O1 is a weak S-module of O2.

Example 5. Consider again the ontologies O1 and O2 from Example 4. The
extension of O1 to O2 is simple, but a rather typical case in practice: one or
more newly introduced concept names are defined in terms of concept and role
names that are already defined in the existing ontology. The existing concept
and role names are only used, but not affected in any way by this extension. In
particular, no new consequences referring only to previously existing concept
and role names is derivable, and thus the extension is conservative. Extensions
of this simple kind are called definitorial.

The notion of a module defined in Definition 3 is much more liberal than
this: for example, it allows the extension to make statements about existing
symbols as long as these statements are already entailed by the existing on-
tology. As another example for the definition of a module, we give a stronger
one that is closer to the idea of definitorial extensions:

Definition 4. Let O1 ⊆ O2 be ontologies, S a signature and QL a query
language. Then O1 is a strong S-module of O2 w.r.t. QL if it is a weak S-
module of O2 w.r.t. QL and, in addition, O2 \O1 and the empty ontology are
S-inseparable w.r.t. QL.

To see an example that illustrates the difference between Definitions 3 and 4,
let

O′2 = O1 ∪ {Father v Human,Father ≡ Male u ∃has child.>}.

Let S = sig(O1). Then O1 is not a strong S-module of O′2 because

O′2 \ O1 |= Male u ∃has child.> v Human

and this inclusion does not follow from the empty ontology. However, we
already have O1 |= Maleu∃has child.> v Human and, indeed, it is possible to
prove that O1 is a weak S-module of O′2.

We do not claim that Definitions 3 and 4 are the only reasonable definitions
of a module. As indicated already in the introduction, many subtle variations
and even completely different approaches are possible. What is common to
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virtually all definitions of a module is that inseparability and conservative
extensions play a central role. In this paper, we will not favour a particular
definition of a module, but rather study modularity directly in terms of in-
separability and conservative extensions. We also remark that there are other
interesting applications of inseparability such as ontology versioning and mod-
ule extraction [31, 29, 28, 15].

3.3 Decision Problems

The notions of inseparability and conservative extension give rise to decision
problems in a natural way. Let L be an ontology language and QL a query
language. Then

• the S-inseparability problem for (L,QL) is to decide, given L-ontologies
O1 and O2 and a signature S, whether O1 ≈QLS O2;

• the S-conservativity problem for (L,QL) is to decide, given L-ontologies
O1 and O2 with O1 ⊆ O2 and a signature S, whether O1 ≈QLS O2;

• the conservativity problem for (L,QL) is to decide, given L-ontologies O1

and O2 with O1 ⊆ O2 whether O1 ≈QLS O2 with S = sig(O1);

In view of the examples given in this section, the utility of these problems
should be clear: they can be used to decide whether a given part of an ontology
is a module, whether two ontologies can be exchanged in some application,
whether an extension to an ontology that is intended to be definitiorial has
damaged the terms that were already defined, etc.

We will discuss these problems in more detail when surveying the options
for query languages in Section 5. For now, we only remark that, in the special
case where L ⊆ QL and S ⊇ sig(O1 ∪ O2), it is not hard to see that

O1 ≈QLS O2 iff O1 |= ϕ for all ϕ ∈ O2 and O2 |= ϕ for all ϕ ∈ O1.

It follows that in this particular case checking S-inseparability reduces to
logical entailment and thus to standard reasoning in QL.

4 Robustness Properties

We introduce the three robustness properties for modularity. Since we study
modularity in terms of inseparability, we also formulate these properties in
terms of inseparability.

Definition 5 (Robustness Properties). Let L be an ontology language
and QL a query language. Then (L,QL) is robust

• under vocabulary extensions if, for all L-ontologies O1 and O2 and signa-
tures S, S′ with S′ ∩ sig(O1 ∪ O2) ⊆ S, the following holds:

O1 ≈QLS O2 ⇒ O1 ≈QLS′ O2;
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O0

c.e.
wrt. QL

c.e. wrt. QL

conservative extension wrt. QL

O0 ∪ O2

O0 ∪ O1

sig(O1) ∩ sig(O2) ⊆ sig(O0)

O0 ∪ O1 ∪ O2

Fig. 1. Robustness under joins.

• under joins if, for all L-ontologies O1 and O2 and signatures S with
sig(O1) ∩ sig(O2) ⊆ S, the following holds for i = 1, 2:

O1 ≈QLS O2 ⇒ Oi ≈QLS O1 ∪ O2;

• under replacement if, for all L-ontologies O1, O2 and O and signatures S
with sig(O) ∩ sig(O1 ∪ O2) ⊆ S, the following holds:

O1 ≈QLS O2 ⇒ O1 ∪ O ≈QLS O2 ∪ O.

In the remainder of this section, we give examples that motivate the usefulness
of the properties given in Definition 5.
Robustness under vocabulary extensions. In practice, most ontologies con-
stantly evolve: they are regularly being extended, updated, corrected, etc.
This evolution usually results in frequent modifications of the ontology’s sig-
nature. For this reason, inseparability should be robust under changes of the
signature, and this is what robustness under vocabulary extensions is about. In
many applications, being inseparable or a conservative extension is of doubt-
ful relevance when a simple addition of fresh symbols to the signature (i.e.,
symbols that are not mentioned in any of the involved ontologies at all) can
change this situation.

Robustness under joins. Taking the union of two or more ontologies is an essen-
tial and frequently used operation. For example, the extension of an existing
ontology with new concept inclusions can be conceived as a union, and also
the import of an existing ontology into a newly constructed one. Robustness
under joins is concerned with the behaviour of inseparability regarding this
operation. Its virtue is probably best appreciated by considering the following
consequence of robustness under joins, formulated in terms of conservative
extensions:

(∗) for all L-ontologies O0, O1, O2, if O0 ∪ O1 and O0 ∪ O2 are conservative
extensions of O0 w.r.t. QL and sig(O1) ∩ sig(O2) ⊆ sig(O0), then O0 ∪
O1 ∪ O2 is a conservative extension of O0 w.r.t. QL.
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O1M

M∪O0 O1 ∪ O0

≈QLS

≈QLS

sig(O0) ∩ sig(M∪O1) ⊆ S

Fig. 2. Robustness under replacement.

To see why (∗) is useful, suppose that two (or more) ontology designers simul-
taneously extend an ontology O0, but work on different parts. They produce
new sets of concept inclusions O1 and O2 to be added to O0 and ensure that
O0∪Oi is a conservative extension of O0 w.r.t. the query language QL that is
used in the intended application, for i ∈ {1, 2}. Now, robustness under joins
guarantees (via (∗)) that the joint extension O0∪O1∪O2 is also a conservative
extension of O0 w.r.t. QL, as illustrated in Figure 1. In the sketched situation,
robustness under joins thus ensures that the two designers can work truly in-
dependently, i.e., they will not be forced to redesign O1 and O2 because of
unexpected interactions.

Robustness under replacement. This property is critical when a module in
an ontology is supposed to be re-used in another ontology. We consider two
example scenarios.

Assume that an ontology designer develops an ontology O0 for hospital
administration and wants to reuse a set S of medical terms from a medical
ontology O1. A typical example for O1 would be Snomed ct, the System-
atized Nomenclature of Medicine, Clinical Terms [46]. The designer knows
that queries to his ontology will be formulated in a query language QL. In-
stead of importing the whole ontology O1, which potentially is very large
(Snomed ct comprises ∼0.4 million medical terms), he chooses to import a
weak S-moduleM of O1 w.r.t. QL, i.e.,M⊆ O1 andM≈QLS O1. If (L,QL)
is robust under replacement, where L is the language in which O0 and O1 are
formulated, then it follows that

M∪O0 ≈QLS O1 ∪ O0.

It is thus indeed possible to use M instead of O1 in O0 without loosing
consequences for the signature S in QL; observe that this does not follow
from the definition of a weak module alone. This situation is illustrated in
Figure 2. Observe that the argument does not depend on the details of O0

and does not break when O0 evolves.
For a second example, we consider the same scenario. Assume now that

the designer of the ontology O0 for hospital administration imports the whole
ontology O1 to reuse the set S of medical terms. He designs O0 such that the
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terms from S as defined in O1 are not corrupted, formalised by O0 ∪O1 ≈QLS
O1. Also assume that the ontology O1 is updated frequently. The designer
wants to ensure that, when an old version of O1 is replaced with a new one,
the terms from S as given in the new version of O1 are still not corrupted.
Since he cannot foresee the changes to O1 that will occur in the future, he
needs to design O0 such that O0 ∪ O1 ≈QLS O1 for all ontologies O1 with
sig(O0) ∩ sig(O1) ⊆ S. If (L,QL) is robust under replacement, this is easy: it
simply suffices to ensure that O0 ≈QLL ∅. This use case has been discussed in
more detail in [17].

The importance of robustness under replacement has first been observed
in [16, 15], see also [17]. It also plays an important role in the context of the
inseparability of programs in logic programming and answer set programming
[35, 20]. Finally, we make a note on the interplay between robustness under
replacements and strong modules as introduced in Definition 4: if (L,QL)
enjoys robustness under replacements and in the realistic case that sig(O2 \
O1) ∩ sig(O1) ⊆ S, we have that O1 is a strong S-module of O2 w.r.t. QL iff
O2\O1 and the empty ontology are S-inseparable w.r.t. QL, i.e., the condition
that O1 is a weak module of O2 is redundant.

5 Query languages, Robustness and Complexity

So far, we have used the powerful query language QLSO. For many applica-
tions, this is inappropriate because QLSO can separate ontologies for which
no differences are observable in the application. In this section, we introduce
a number of DL-based query languages used in applications and discuss the
corresponding notions of S-inseparability and S-conservative extensions, as
well as their robustness properties and the complexity of the decision prob-
lems given in Section 3.3. We start with rather weak query languages and
gradually move towards more expressive ones including QLFO and QLSO.

5.1 Inconsistency

A very weak query language QL⊥ can be defined as {> v ⊥}, i.e., QL⊥
consists of an unsatisfiable first-order sentence. Clearly, O |= > v ⊥ iff O is
inconsistent. Thus, two ontologies O1 and O2 are S-inseparable w.r.t. QL⊥ if
either both O1 and O2 are inconsistent, or both are consistent. Observe that
S-inseparability w.r.t. QL⊥ does not depend on the actual signature S.

The query language QL⊥ is too weak for defining a reasonable notion of
modularity. However, QL⊥ can be used to ensure that the modification of an
ontology has not caused inconsistency: the extension O2 of an ontology O1

by a set of sentences O does not cause inconsistency iff O2 is a conservative
extension of O1 w.r.t. QL⊥.

For every ontology language L, (L,QL⊥) is robust under vocabulary ex-
tensions because S-inseparability does not depend on S. It is robust neither



16 Konev et al.

under joins nor replacement, for any of the ontology languages introduced
in Section 2. Let, for example, O1 = {A ≡ >} and O2 = {A ≡ ⊥}. Then
O1 ≈QL⊥ O2, but O1 6≈QL⊥ O1 ∪ O2 because O1 and O2 are consistent, but
O1 ∪O2 is inconsistent. Thus, (ALC,QL⊥) is not robust under joins. The de-
cision problems associated with (L,QL⊥) obviously have the same complexity
as deciding ontology consistency in L.

5.2 Subsumption between concept names

The query language QLCN is defined as the set of all queries A v B, where A
and B are concept names or truth constants ⊥ and >. Two ontologies O1 and
O2 are S-inseparable w.r.t. QLCN iff they give raise to the same classification
regarding the concept names in S, i.e., the sub-/superclass relation between
any two concept names in S is identical.

Using QLCN as a query language is useful if the application relies only
on the classification, i.e., changes in the meaning of a symbol are consid-
ered acceptable as long as the classification does not change. Observe that
S-inseparability w.r.t. QLCN implies S-inseparability w.r.t. QL⊥, but the
converse does not hold whenever S 6= ∅. Also observe that S-inseparability
w.r.t. QLCN is oblivious to the addition and deletion of role and individual
names to and from S.

As illustrated by the following example, the query language QLCN is still
very weak when used to define modularity.

Example 6. Reconsider the ontologies from Example 5:

O1 = {Male ≡ Human u ¬Female,Human v ∀has child.Human}
O′2 = O1 ∪ {Father v Human,Father ≡ Male u ∃has child.>}.

Let S = sig(O1). Then O1 is a weak S-module because the same implications
between concept names in S are derivable from O1 and O′2. However, this
is true only because we restrict ourselves to subsumption between concept
names, as we had said already that Male u ∃has child.> v Human separates
the two ontologies.

It is easy to see that (L,QLCN) is robust under vocabulary extensions
for any ontology language L introduced in Section 2. As shown by the next
example, robustness under joins and replacement fails.

Example 7. Let O1 = {A v ∃r.B}, O2 = {∃r.B v E}, and S = {A,B, r, E}.
Then O1 ≈QLCN

S O2. Failure of robustness under joins follows from O1 6≈QLCN

S

O1 ∪ O2 since O1 ∪ O2 |= A v E and O1 6|= A v E.
For failure of robustness under replacement consider O = {A v ¬∃r.B}.

Then O1 ∪ O |= A v ⊥ but O2 ∪ O 6|= A v ⊥.

Still, QLCN has useful applications, e.g., for efficient implementations of clas-
sification in a DL reasoner and in distributed description logics, where sub-
sumptions between concept names are usually all that matter. The decision
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problems associated with (L,QLCN) are not harder than deciding subsump-
tion between concept names in L.

5.3 Subsumption between complex concepts

For any description logic L, the query language QLL is defined as the set of
all queries C v D, where C and D are L-concepts. If L admits role inclusions,
we also include queries r v s, with r and s roles. Thus, two ontologies O1

and O2 are S-inseparable w.r.t. QLL iff they entail the same subsumptions
between LS-concepts and the same role inclusions r v s with r, s ∈ S, if
role inclusions are present in L. The following example shows that even for
propositional DLs L without role names, QLL is strictly stronger than QLCN.

Example 8. Let

O1 = ∅, O2 = {Parent uMale v Father}, S = {Parent,Male,Father}.

Then O2 is an S-conservative extension of O1 w.r.t.QLCN, but ParentuMale v
Father separates O1 and O2 w.r.t. QLALC .
When choosing different DLs L, the resulting notions of inseparability usually
differ.

Example 9. Let

O1 = {Human v ∃parent.>}, O2 = {Human v ∃parent.Maleu∃parent.¬Male}

and S = {Human, parent}. Then O1 and O2 are S-inseparable w.r.t. QLALC ,
but Human v ¬(≤ 1 parent>) S-separates O1 and O2 w.r.t. QLALCQ.

If L provides all Boolean operators, a useful alternative definition of QLL
is the set of queries C v ⊥ with C an L-concept, i.e., two ontologies O1 and O2

are S-inseparable w.r.t. QLL iff there is no LS-concept C that is satisfiable
w.r.t. O1 but not w.r.t. O2, or vice versa. To see that the definitions are
equivalent, observe that C v D separates O1 and O2 iff Cu¬D v ⊥ separates
O1 and O2.

The query languages QLL are often appropriate during the design process
of an ontology.

Example 10. Assume an ontology designer extends a medical ontology O0

written in a DL L with a set O1 of L-sentences in order to cover some part
of medicine, say anatomy, in more detail. He wants to ensure that this opera-
tion does not impact the subsumptions between complex concepts built over
symbols that are already defined in O0 and not related to anatomy. Then, he
should ensure that O0 ∪O1 is an S-conservative extension of O0 w.r.t. QLL,
where S consists of all symbols from O0 that are unrelated to anatomy. Simi-
larly, conservative extensions w.r.t. QLL can be used to ensure that deletions
of sentences from an ontology do not change the subsumptions between con-
cepts in an unexpected way. In the case that existing sentences are modified,
the designer should use inseparability instead of conservative extensions.
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The query languages QLL are powerful enough to define useful notions of
modularity, for example via Definitions 3 and 4. In particular, inseparability
w.r.t.QLL is suited to ensure a relatively strong form of module independence,
in contrast to inseparability w.r.t. QL⊥ and QLCN. We now discuss the formal
properties of QLL in more detail. We concentrate on giving an overview of
available results and thus defer longer proofs to later sections or the appendix.

Robustness Properties

In many cases, (L,QLL) is robust under vocabulary extensions and joins. The
following result is a consequence of Theorems 15 and 16 in Section 6.2.

Theorem 1. Let L be any of the DLs ALC, ALCQ, ALCI, ALCQI, ALCU ,
ALCQU , ALCIU , ALCQIU . Then (L,QLL) is robust under vocabulary ex-
tensions and joins.

Thus, standard constructors such as inverse roles and number restrictions do
not cause any difficulties as far as robustness under vocabulary extensions and
joins is concerned. The situation is different for nominals and role hierarchies.

Proposition 1. (ALCO,QLALCO) and (ALCH,QLALCH) are not robust un-
der vocabulary extensions and joins.

Proof. We start with non-robustness under vocabulary extensions in ALCO.
Let

O1 = {> v ∃r.>},
O2 = O1 ∪ {A v ∀r.¬A,¬A v ∀r.A}.

ThenO2 is a conservative extension ofO1 w.r.t.QLALCO, thusO1 ≈QLALCOS O2

for S = {r}. Now observe that {a} v ∀r.¬{a} separates the two ontologies
w.r.t. QLALCO, for any nominal {a}. Thus, O1 6≈QLALCOS′ O2 for S′ = S∪{a}.
Observe that the nominal {a} has no connection whatsoever with the two
ontologies O1 and O2.

Now consider ALCH. Let

O1 = {> v ∀ri∀rj .⊥ | i, j = 1, 2} ∪ {∃r1.> ≡ ∃r2.>},
O2 = O1 ∪ {s v r1, s v r2,∃r1.> v ∃s.>}.

Then O2 is a conservative extension of O1 w.r.t. QLALCH, thus O1 ≈QLALCHS

O2 for S = {r1, r2}. However, ∃r1.> u ∀r1.A v ∃r2.A separates the two
ontologies w.r.t. QLALCH, where A is a fresh concept name. The proof of non-
robustness under joins is similar and deferred to Proposition 7 in Appendix A.
ut
In Section 4, we have argued that robustness under replacement is an es-
sential property for most applications of inseparability, such as modularity.
Theorem 1 thus indicates that one has to be rather careful when using ALCO
and ALCH as a query language. In particular, weak and strong modules as
in Definition 3 and 4 are inappropriate. However, it is possible to “build in”
robustness under vocabulary extensions when defining a module:
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Definition 6. Let O1 ⊆ O2 be ontologies, S a signature, and QL a query lan-
guage. Then O1 is a weak S-module in O2 w.r.t. QL robust under vocabulary
extensions if O2 is an S′-conservative extension of O1 w.r.t. QL for all S′

such that sig(O1 ∪ O2) ∩ S′ ⊆ S.

In a similar way, it is possible to define modules with robustness under joins
built in.

We now turn to robustness under replacement. This property fails for many
standard description logics such as the ones in the following result.

Theorem 2. Let L be any of the DLs ALC,ALCQ,ALCI,ALCQI, ALCO,
ALCHO. Then (L,QLL) is not robust under replacement.

Proof. Let

O1 = ∅, O2 = {A v ∃r.B}, S = {A,B}, O = {A ≡ >, B ≡ ⊥}.

It is not hard to see that for every first-order sentence ϕ with sig(ϕ) ⊆ S,

O2 |= ϕ iff {∃x A(x)→ ∃y B(y)} |= ϕ.

However, the FO-ontology {∃x A(x) → ∃y B(y)} has no non-tautological
consequences that can be formulated in QLL using only symbols from S.
Hence, O2 is an S-conservative extension of O1 w.r.t. QLL. But then, O1 ∪
O 6≈QLLS O2 ∪ O since > v ⊥ separates the two ontologies. ut

In Section 4, we have argued that robustness under vocabulary extensions
is needed for the reuse modules. Thus, Theorem 2 indicates that one has
to be careful when using the query languages listed in the theorem for this
application. For example, modules such as in Definitions 3, 4 and 6 are not
appropriate. One approach to fix this is to define a notion of module that has
robustness under replacements built in:

Definition 7. Let O1 ⊆ O2 be ontologies, S a signature, and QL a query
language. Then O2 is a weak S-module of O2 w.r.t. QL robust under re-
placement if for all ontologies O with sig(O) ∩ sig(O2) ⊆ S, O2 ∪ O is an
S-conservative extension of O1 ∪ O w.r.t. QL.

The next result identifies a second approach to deal with Theorem 2: if ro-
bustness under replacement is desired, switch from (L,QLL) to (L,QLLU ).
If this is done, robustness under replacements is recovered and it suffices to
work with weak modules as in Definition 3. We shall see in Section 6 that the
two approaches to deal with Theorem 2 are identical in some rather strong
sense. For now, we only show that the addition of a universal role to the query
language usually recovers robustness under replacement.

Theorem 3. Let L be any of the DLs ALC, ALCI, ALCQ, ALCQI. Then
(LU ,QLLU ), and thus also (L,QLLU ), is robust under replacement.
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Proof. Let O1 ≈QLLS O2 and assume that O1 ∪O |= C0 v D0, where sig(O)∩
sig(O1 ∪ O2) ⊆ S and sig(C0 v D0) ⊆ S. Let S′ = S ∪ sig(O). By robustness
under signature extensions, O1 ≈QLLS′ O2. Clearly

O1 |= ∀u.
l

CvD∈O

¬C tD v ∀u.(¬C0 tD0).

Since O1 ≈QLLS′ O2, O2 entails the same subsumption. Thus O2 ∪ O |= C0 v
D0, as required. ut

We present one additional observation regarding robustness under replace-
ment. In the proof of Theorem 2, r is a role that does not occur in S. It turns
out that such roles are required to obtain counterexamples to robustness under
replacement. The following result is proved in Appendix A.

Theorem 4. Let L be any of the DLs ALC, ALCI, ALCQ, ALCQI, S a
signature, and assume that O1 and O2 contain only roles from S. Then

O1 ≈QLLS O2 implies O1 ∪ O ≈QLLS O2 ∪ O,

for all L-ontologies O with sig(O) ∩ sig(O1 ∪ O2) ⊆ S.

Decision Problems

We now discuss the computational complexity of deciding inseparability and
conservative extensions w.r.t. QLL. The following result is due to [22, 37].

Theorem 5. Let L be any of the DLs ALC, ALCI, ALCQ and ALCQI. Then
the S-inseparability problem for (L,QLL) is 2-ExpTime-complete. Moreover,
the S-conservativity and conservativity problem are 2-ExpTime-complete as
well.

We remark that, in [22, 37], the results stated in Theorem 5 are proved for
S-conservativity w.r.t. QLL for ALC and ALCQI only. However, it is not too
difficult to extend the proofs to ALCI and ALCQI and S-inseparability in-
stead of S-conservativity. For the extensions of the logics L with the universal
role we note the following conjecture.

Conjecture 1. Let L be any of the DLs ALCU , ALCIU , ALCQU , ALCQIU .
Then the S-inseparability problem for (L,QLL) is 2-ExpTime-complete.

Interestingly, the addition of nominals to ALCQI leads to undecidability [37].

Theorem 6. For (ALCQIO,QLALCQIO), the S-inseparability problem and
conservativity problem are undecidable.

Recall that LO denotes the extension of a DL L by nominals. We conjec-
ture that even with nominals, S-inseparability is still 2-ExpTime-complete
for the DLs from above which include ALC but are strictly below ALCQI:
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Conjecture 2. Let L be any of the DLs ALC, ALCI, ALCQ or their extension
by the universal role. Then the S-inseparability problem for (LO,QLLO) is
2-ExpTime-complete.

Notions of a module such as the ones given in Definitions 6 and 7 give rise
to other decision problems than the S-inseparability problem and the conser-
vativity problem. The following result addresses the case of Definition 6. It
is proved in [17] for (ALCO,QLALCO). The proof is easily extended to the
other listed cases.

Theorem 7. Let L be any of the DLs ALC, ALCI, ALCQ or their extension
by the universal role. Given two LO-ontologies O1 and O2 and a signature
S, it is undecidable whether O1 is a weak modules of O2 w.r.t. QLLO robust
under replacement.

5.4 ABoxes and Conjunctive Queries

If ontologies are used together with an ABox, inseparability based on sub-
sumption is usually too weak. In this section, we define notions of insepara-
bility based on instance checking and conjunctive query answering.

In principle, there are two ways to include the ABox into our framework:
as part of the ontology and as part of the query language. The first option
is appropriate if the ontology and ABox are closely coupled, e.g. they are
designed and maintained together, and the ABox does not change significantly
more often than the ontology. In this case, we should define S-inseparability
between knowledge bases.

Definition 8. Let L be a description logic. We call knowledge bases K1 and
K2

a) S-inseparable w.r.t. L-instance checking iff, for any L-assertion C(a) with
sig(C) ⊆ S, we have K1 |= C(a) iff K2 |= C(a).

b) S-inseparable w.r.t. L-conjunctive queries iff, for all instantiated L-con-
junctive queries q = ∃v.ϕ(v,a) with sig(q) ⊆ S, we have K1 |= q iff K2 |=
q.

It is easy to see that the latter implies the former. However, the converse is
false. For a simple example, let L = ALC,

O1 = ∅, O2 = {A v ∃r.B}, A1 = A2 = {A(a)}, and S = {A,B}.

Then K1 and K2 are S-inseparable w.r.t. instance checking, but the con-
junctive query ∃x.B(x) separates the two knowledge bases. When applied
to knowledge bases with an empty ABox, S-inseparability w.r.t. L-instance
checking and (subsumption-based) S-inseparability w.r.t. QLL coincide. To
see this, note that (i) if C v D separates K1 and K2, then so does Dt¬C(a),
for any a ∈ NC; conversely (ii) if C(a) separates K1 and K2, then so does
> v C.
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It should be clear that the above two notions of inseparability fit into
our framework: knowledge bases can be translated into sets of FO-sentences,
and thus can be viewed as ontologies. However, in most applications that use
ABoxes, the above approach does not seem appropriate because the ontology
(conceptual modelling) and the ABox (actual data) have a different status. In
particular, the ABox is usually unknown when the ontology is developed and
changes much more frequently than the ontology. This observation suggests
that it is useful to consider a notion of inseparability that captures ABoxes
as unknown “black boxes” and thus quantifies over all possible ABoxes. This
corresponds to making the ABox part of the query, instead of the ontology.

Definition 9. Let L be a description logic. We say that ontologies O1 and
O2 are

c) S-inseparable w.r.t. L-instance checking iff, for all L-ABoxes A with
sig(A) ⊆ S and L-assertions C(a) with sig(C) ⊆ S, we have (O1,A) |=
C(a) iff (O2,A) |= C(a).

d) S-inseparable w.r.t. L-conjunctive queries iff, for all L-ABoxes A with
sig(A) ⊆ S and all instantiated L-conjunctive queries q = ∃v.ϕ(v,a), we
have (O1,A) |= q iff (O2,A) |= q.

Observe that c)-d) apply to ontologies, in contrast to a)-b), which apply
to knowledge bases. Again, it is easy to see that if two ontologies are S-
inseparable w.r.t. L-conjunctive queries, then they are S-inseparable w.r.t. L-
instance checking. The converse fails, with essentially the same argument as
for a) and b) above.

Note that S-inseparability of two ontologies O1 and O2 w.r.t. L-instance
checking implies S-inseparability w.r.t. QLL because, as above, if C v D
separates O1 and O2, then so does the empty ABox together with the instance
query D t ¬C(a). However, unlike for a), the conserve does not hold.

Example 11. Let

O1 = ∅, O2 = O1 ∪ {A v ∀r.¬A,¬A v ∀r.A}, S = {r}.

Then O1 and O2 are S-inseparable w.r.t. QLALC , but (O1, {r(a, a)}) is con-
sistent and (O2, {r(a, a)}) is inconsistent. Thus, the ABox A = {r(a, a)} and
assertion ⊥(a) separate O1 and O2. Note that this example is similar to the
counterexample given in the proof of Proposition 1.

S-inseparability w.r.t. L-instance checking is stronger than S-inseparability
w.r.t. QLL because of the availability of the ABox, which allows us to fix a
part of the model up to isomorphism.

We show that the notions of inseparability given under c) and d) live
inside our framework. In what follows, we use individual names as first-order
constants. For an L-ABox A, define a corresponding first-order sentence

A] :=
∧

C(a)∈A

C][x/a] ∧
∧

r(a,b)∈A

r(a, b).
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For an instantiated conjunctive query ∃v.ϕ(v,a), define a corresponding first-
order sentence q] by replacing each concept atom C(a) in ϕ with C][x/a].

Definition 10. Let L be a description logic. Then

• QLIL is the set of first-order sentences A] → C][x/a], where A is an L-
ABox, C an L-concept and q an individual name;

• QLqL is the set of first-order sentences A] → q], where A is an L-ABox
and q is an instantiated L-conjunctive query.

It is easy to see that two ontologies are S-inseparable w.r.t. L-instance check-
ing in the sense of Definition 9 c) iff they are S-inseparable w.r.t. QLIL and
that they are S-inseparable w.r.t. L-conjunctive queries in the sense of Defi-
nition 9 d) iff they are S inseparable w.r.t. QLqL.

As indicated by the discussion above, query languages such as QLIL and
QLqL induce an even stronger notion of S-inseparability than QLL. Intuitively,
their power is between that of QLL and QLFO, as discussed in Section 5.5
below. For QLIL and QLqL, neither the computational complexity of deciding
inseparability nor robustness properties have been investigated for description
logics extending ALC. In Section 8, we will discuss a number of results for
these query languages for ontologies based on weak DLs such as EL and DL-
Lite.

5.5 Semantic Inseparability, First- and Second-order Queries

The query languages QL considered so far are all proper fragments of first-
order logic. In fact, it is not difficult to show that inseparability w.r.t. QLFO,
the set of all first-order sentences, is stronger than any of them. To see this,
consider

O1 = ∅, O2 = {A v ∃r.(A uB) u ∃r.(A u ¬B)}, S = {A}

Then, O2 is an S-conservative extension of O1 w.r.t. all query languages con-
sidered so far, but the first-order sentence ∃x.A(x) ⇒ ∃y.(x 6= y ∧ A(y))
separates O1 and O2.

Theorem 8. Let L be a fragment of FO. Then (L,QLFO) is robust under
vocabulary extensions, joins and under replacement.

Proof. Robustness under vocabulary extensions and joins follow from Theo-
rems 15 and 16 in Section 6.2. Robustness under replacement follows from
robustness under vocabulary extensions and the fact that first-order logic is
closed under Boolean operators: from O1 ≈FOS O2, it follows that for all
L-ontologies O with sig(O) ∩ sig(O1 ∪ O2) ⊆ S and FO-sentences ϕ with
sig(ϕ) ⊆ S, we have

O1 |=
∧
O → ϕ ⇔ O2 |=

∧
O → ϕ,
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which implies
O1 ∪ O |= ϕ ⇔ O2 ∪ O |= ϕ.

ut

An even stronger query language than QLFO is QLSO, the set of all second-
order sentences. As has already been mentioned, S-inseparability w.r.t. QLSO
implies inseparability w.r.t. any query language allowed in our framework.
Interestingly, inseparability w.r.t. QLSO is equivalent to a semantic notion
of inseparability, which we introduce next. Given a model I and a signature
S, we denote by I|S the S-reduct of I; i.e., ∆I|S = ∆I , XI|S = XI for all
X ∈ S, and predicates not in S are not interpreted by I|S .

Definition 11. Let O1,O2 be ontologies and S a signature. We say that

• O1 and O2 are semantically S-inseparable and write O1 ≈sem
S O2 if

{I|S | I |= O1} = {I|S | I |= O2}.

• O2 is a semantic S-conservative extension of O1 if O1 ⊆ O2 and O1 ≈sem
S

O2.

We simply speak of a semantic conservative extension if S = sig(O1). In
the literature, the term ‘model conservative extension’ is used synonymously.
We now show equivalence of semantic inseparability and inseparability w.r.t.
QLSO.

Theorem 9. Let O1 and O2 be ontologies and S a signature. Then the fol-
lowing conditions are equivalent:

• O1 ≈QLSOS O2;
• O1 ≈sem

S O2.

Proof. The implication from Point 1 to Point 2 follows from the fact that
no second-order sentence using only predicates from S can distinguish two
models whose reducts to S are isomorphic. The other direction holds since we
have O1 ≈sem

S O2 if O1 implies the second-order sentence ∃S1 · · · ∃Sn.
∧
O2

with {S1, . . . , Sn} = sig(O2) \ S and O2 implies the second-order sentence
∃S′1 · · · ∃S′m.

∧
O1 with {S′1, . . . , S′m} = sig(O1) \ S. ut

The following robustness properties are easily proved by exploiting the high
expressive power of SO.

Theorem 10. Let L be a fragment of SO. Then (L,QLSO) is robust under
vocabulary extensions, joins and under replacement.

The relation between inseparability w.r.t. QLFO and semantic inseparabil-
ity has extensively been discussed in the literature on software specifica-
tion [26, 40, 47]. In [8, 48], the reader can find a proof that semantic insep-
arability is strictly stronger than inseparability w.r.t. QLFO. However, when
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restricted to finite models, the two notions are equivalent because every finite
model can be described up to isomorphism in first-order logic with equality.
The computational complexity of deciding semantic S-inseparability has been
studied in [37, 28].

Theorem 11. For ALC-ontologies, semantic conservativity is Π1
1 -hard, thus

neither decidable nor recursively enumerable.

Conditions under which semantic inseparability becomes decidable are
investigated in [28]. For example, if S contains no roles, then semantic S-
inseparability becomes decidable:

Theorem 12. For ALC-ontologies O1 and O2 and signatures S containing
no roles, it is decidable (and NExpTimeNP-complete) whether O1 ≈sem

S O2.

6 More on Robustness

We take a closer look at the robustness properties and relate them to standard
notions from logic such as interpolation and Robinson consistency.

6.1 Robustness under Replacement

We start with addressing the question why (FO,QLFO) and (LU ,QLLU ),
with L as in Theorem 3, are robust under replacement while (L,QLL) are
not. A first hint is given by the simple proof of Theorem 8, which crucially
exploits that the query language QLFO is closed under the Boolean operators.
This is clearly not the case for QLL, but also not for QLLU . However, it is
well-known that there is a close connection between the universal role and the
Boolean operators, see e.g. [21]. To make this connection formal, we extend
QLL to the query language QLBL that consists of all Boolean combinations of
QLL-sentences: QLBL is the set of sentences ψ defined by

ψ ::= ϕ | ψ1 ∧ ψ2 | ¬ψ,

where ϕ ∈ QLL and ψ,ψ1, ψ2 range over QLBL -sentences. The next result ex-
plains why (LU ,QLLU ) is robust under replacement. It is an easy consequence
of the well-known fact that QLLU and QLBL have the same expressive power
in the following sense [21]: for every ϕ ∈ QLLU , there exists a ϕ∗ ∈ QLBL with
sig(ϕ) = sig(ϕ∗) such that I |= ϕ iff I |= ϕ∗ holds for all interpretations I,
and vice versa.

Theorem 13. Let L be any of the DLs ALC, ALCI, ALCQ, ALCQI. Then
≈QL

B
L

S = ≈QLLUS for any signature S.
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In Section 5.3, two approaches have been identified to deal with non-robustness
under replacements of the query language QLL when L does not contain the
universal role: either build robustness under replacements into the definition
of a module as in Definition 7 or switch from (L,QLL) to (L,QLLU ). We
now show that these two approaches are actually identical. To do this, it
is convenient to define a notion of inseparability that has robustness under
replacements build in, analogous to Definition 7: QLOL consists of all sentences

(
∧
O])→ ϕ,

where O is an L-ontology and ϕ a query from QLL.

Theorem 14. Let L be any of the DLs ALC, ALCI, ALCQ, ALCQI. Then
≈QL

O
L

S = ≈QLLUS for any signature S.

Proof. By Theorem 13, it suffices to show that ≈QL
O
L

S = ≈QL
B
L

S . The ‘if’ di-
rection is easy since it is not hard to see that QLOL ⊆ QL

B
L . For the ‘only if’

direction, assume O1≈
QLO

L
S O2. Assume that O2 |= ϕ, where ϕ is a Boolean

combination of LS-implications. Clearly, ϕ is equivalent to a conjunction of
formulas of the form

(> v C0) ∨ · · · ∨ (> v Cm) ∨ ¬(> v Cm+1) ∨ · · · ∨ ¬(> v Cn)

and each such conjunct is equivalent to

(> v C0) ∨ · · · ∨ (> v Cm) ∨ ¬(> v D),

where D = Cm+1 u · · · u Cn. Moreover, using the fact that models of L-
ontologies are closed under disjoint unions, one can show that there exists
i ≤ m such that O2 |= (> v Ci)∨¬(> v D), which implies O2 ∪ {> v D} |=
> v Ci. From O1≈

QLO
L

S O2, we obtain O1 ∪ {> v D} |= > v Ci. Since this
holds for all conjuncts of ϕ, we get O1 |= ϕ. ut

Now, the two mentioned approaches are identical since it clearly follows from
Theorem 14 that O1 is a weak S-module w.r.t. QLL robust under replacement
iff O1 is a weak S-module w.r.t. QLLU according to Definition 3.

Finally, Theorem 14 can provide us with another interesting perspective
on the relationship between (L,QLL) and (L,QLLU ). Obviously, ≈QLLUS ⊆
≈QLLS . However, ≈QLLUS is much more than just some coarsening of ≈QLLS that
yields robustness under replacement: it is the maximal one. The following is
a direct consequence of Theorem 14 and the definition of QLOL .

Corollary 1. Let L be any of the DLs ALC, ALCI, ALCQ, ALCQI and S
a signature. Then ≈QLLUS is the maximal subset of ≈QLLS such that for all
L-ontologies O1, O2 and O with sig(O) ∩ sig(O1 ∪ O2) ⊆ S, O1 ≈QLLS O2

implies O1 ∪ O ≈QLLS O2 ∪ O.
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6.2 Robustness under Vocabulary Extensions and Interpolation

In this section, we discuss robustness under vocabulary extensions and its
relationship to interpolation. We consider the following standard notion of
interpolation.

Definition 12 (Interpolation). A query language QL has weak interpola-
tion iff for every set Ψ of QL-sentences and every QL-sentence ϕ such that
Ψ |= ϕ, there exists a set I(Ψ, ϕ) of QL-sentence such that

• sig(I(Ψ, ϕ)) ⊆ sig(Ψ) ∩ sig(ϕ);
• Ψ |= I(Ψ, ϕ);
• I(Ψ, ϕ) |= ϕ.

QL has interpolation if there always exists a finite set I(Ψ, ϕ) with these
properties.

For any compact3 query language QL, weak interpolation implies interpola-
tion. Interpolation has been investigated extensively in mathematical logic
and for modal logics closely related to DLs. For example, propositional logic,
first- and second-order logic, and basic modal logic have interpolation [14, 27].
Proofs of interpolation for a variety of DLs are given in Appendix B.

The following proposition shows that weak interpolation implies robust-
ness under vocabulary extensions:

Proposition 2. Suppose L and QL are given and L ⊆ QL. If QL has weak
interpolation, then (L,QL) is robust under vocabulary extensions.

Proof. Suppose O1 ≈QLS O2 and let ϕ be a QL-sentence with sig(ϕ)∩sig(O1∪
O2) ⊆ S such that O1 |= ϕ. By weak interpolation, there exists an interpolant
I(O1, ϕ). From sig(I(O1, ϕ)) ⊆ S we obtain O2 |= I(O1, ϕ). Hence O2 |= ϕ.
ut

Theorem 15. Let L be any of the DLs ALC, ALCQ, ALCI, ALCQI, ALCU ,
ALCQU , ALCIU , ALCQIU . The following are robust under vocabulary ex-
tensions:

1. (L,QLL);
2. (L′,QLFO), for any fragment L′ of first-order logic;
3. (L′,QLSO), for any fragment L′ of second-order logic.

Proof. By Proposition 9 of Appendix B, the mentioned languages QLL have
interpolation and it thus remains to apply Proposition 2 to establish Point 1.
Points 2 and 3 follow from Proposition 2 and the fact that first-and second
order logic have interpolation.

3 QL is compact if Ψ |= ϕ implies that there exists a finite subset Ψ ′ of Ψ such that
Ψ ′ |= ϕ. First-order logic and its fragments are compact. Second-order logic and
first-order logic over finite models are not compact.
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We state a partial converse of Proposition 2. An infinitary ontology is a finite
or infinite set of second-order sentences.

Proposition 3. Suppose (QL,QL) is robust under vocabulary extensions for
infinitary ontologies. Then QL has weak interpolation.

Proof. Assume O |= ϕ, where O is a set ofQL-sentences and ϕ aQL-sentence.
Set S = sig(O) ∩ sig(ϕ) and

O′ = {ψ ∈ QL | O |= ψ, sig(ψ) ⊆ S}.

Then O |= O′ and O and O′ are S-inseparable w.r.t. QL. By robustness under
vocabulary extensions for infinitary ontologies, O and O′ are S′-inseparable
w.r.t.QL, where S′ = sig(ϕ). FromO |= ϕ we obtainO′ |= ϕ. Hence I(O, ϕ) =
O′ is as required. ut

An interesting logic which is robust under vocabulary extension but does not
have interpolation is first-order logic over finite models. One can easily show
weak interpolation for this logic, and, therefore, robustness under vocabulary
extensions. The argument for failure of interpolation is as follows: using a
binary predicate symbol < and a unary predicate symbol red, one can write
a finite set O1 of first-order sentences that is satisfied exactly in those finite
models which have an even number of points (state that < is a linear order,
exactly every second point is red, and the first and last point have distinct
colours). Use a different binary relation symbol <′ and unary predicate green
for a finite set O2 of first-order axioms which is satisfied exactly in finite
models with an odd number of points. Then O1 |=fin ¬

∧
O2, but there does

not exist a finite interpolant.

6.3 Robustness under Joins and Interpolation

We discuss the relation between robustness under joins and interpolation.
For (QLFO,QLFO), robustness under joins is easily seen to be equivalent
to the well-known Robinson joint consistency property [14]: if T1 and T2 are
consistent first-order theories both extending an S-complete theory T0 with
sig(T0) ⊆ S (i.e. T0 |= ϕ or T0 |= ¬ϕ for all ϕ over S) and sig(T1)∩sig(T2) ⊆ S,
then T1 ∪ T2 is consistent. As this property is known to be closely related to
interpolation, it is no surprise that robustness under joins is closely related to
interpolation as well.

Proposition 4. Let L ⊆ QL and assume that QL is closed under Boolean
operators. If QL has weak interpolation, then (L,QL) is robust under joins.

Proof. Suppose QL has weak interpolation, O1 and O2 are S-inseparable
w.r.t. QL and sig(O1)∩ sig(O2) ⊆ S. Assume O1 ∪O2 |= ϕ where sig(ϕ) ⊆ S.
Then

O1 |=
∧
O2 → ϕ.
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Take an interpolant I(O1,
∧
O2 → ϕ) and observe that its signature is con-

tained in S. Then O2 |= I(O1,
∧
O2 → ϕ), by S-inseparability of O1 and O2

w.r.t. QL and the assumption that QL is closed under Boolean operators.
Hence O2 |=

∧
O2 → ϕ. But then O2 |= ϕ. ut

Theorem 16. Let L be any of the DLs ALC, ALCQ, ALCI, ALCQI, ALCU ,
ALCIU , ALCQU , ALCQIU . The following are robust under joins.

1. (L,QLL);
2. (L′,QLFO), for any fragment L′ of first-order logic;
3. (L′,QLSO), for any fragment L′ of second-order logic.

Proof. Using Proposition 4, Points 2 and 3 follow from the fact that first- and
second-order logic have interpolation and are closed under Boolean operators.
For ALC, ALCQ, ALCI and ALCQI, robustness under joins is proved in
Proposition 10 of Appendix A.

It remains to show robustness under joins for LU if L is any ofALC,ALCI,
ALCQ, ALCQI. By Proposition 9 of Appendix B, QLLU has interpolation.
As QLLU and QLBL have the same expressive power (see Section 6.1), QLBL
has interpolation. Hence, by Proposition 4, (QLBL ,QL

B
L ) is robust under joins.

Once more sinceQLLU andQLBL have the same expressive power, (LU ,QLLU )
is robust under joins. ut

The following is a partial converse of Proposition 4.

Proposition 5. Let QL be a fragment of first-order logic closed under Boolean
operators such that (QL,QL) is robust under joins for infinitary ontologies.
Then QL has interpolation.

Proof. Suppose O |= ϕ. Let S = sig(O) ∩ sig(ϕ) and

Ψ0 = {ψ ∈ QL | sig(ψ) ⊆ S,O |= ψ}.

We show that Ψ0 is an interpolant for (O, ϕ). Assume not. Then Ψ0 ∪ {¬ϕ}
is satisfiable. Take a model I satisfying Ψ0 ∪ {¬ϕ} and denote by O′ the set
of QL-sentences ψ with sig(ψ) ⊆ S which are true in I. Then both O′ ∪ O
and O′ ∪ {¬ϕ} are S-conservative extensions of O′ w.r.t. QL. By robustness
under joins, O′ ∪O ∪ {¬ϕ} is an S-conservative extension of O′ w.r.t. QL; in
particular, it is consistent. Hence O 6|= ϕ and we have derived a contradiction.
ut

7 Uniform Interpolation and Forgetting

Assume that we want to re-use the information that an ontology O provides
about a certain signature S in an application where only queries formulated
in QL are relevant. Then we have two options. The first is to extract an S-
module, i.e., to identify a subset O′ of O that is S-inseparable from O w.r.t.
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QL (or satisfies even stronger conditions, cf. the other possible definitions of a
module). In this approach, which is pursued in [28, 15], the extracted module
may also contain symbols not in S. The second option is to construct a new
ontologyOS that contains only symbols from S and has the same consequences
in QL over S as O in the sense that O and OS are S-inseparable w.r.t. QL.
Whether such an ontology OS exists and can be effectively constructed de-
pends on the ontology language used, the signature S and the query language
QL. This problem has been studied by different research communities under
various names such as forgetting [34, 43, 50], uniform interpolation [42, 23, 49]
and variable elimination.

Definition 13 (Uniform Interpolation (Forgetting)). (L,QL) has uni-
form interpolation if for every L-ontology O and signature S there exists
an L-ontology OS with sig(OS) ⊆ S such that O ≈QLS′ OS for all S′ with
sig(O) ∩ S′ ⊆ S. In this case, OS is called a S-uniform interpolant of O
w.r.t. (L,QL).

Note that if (QL,QL) has uniform interpolation, then QL has interpolation:
assume that O |= ϕ and let S = sig(O) ∩ sig(ϕ). Then O |= OS and OS |= ϕ.
Thus, OS is an interpolant. This explains the name uniform interpolant as it is
an interpolant that does not depend on the right hand side of the consequence.

In the context of forgetting, it can also be sensible to define uniform inter-
polation in a slightly less strict way, namely by demanding inseparability only
w.r.t. S rather than the signatures S′ used in Definition 13. By Proposition 2,
this definition is equivalent to the stronger one if QL has interpolation.

There is an intimate connection between the computation of S-uniform in-
terpolants and deciding S-inseparability. In particular, if (L,QL) has uniform
interpolation, then S-inseparability of L-ontologies O and O′ w.r.t. QL can be
decided by first computing S-uniform interpolants OS of O w.r.t. (L,QL) and
O′S of O′ w.r.t. (L,QL), and then checking whether O′S |= ϕ for all ϕ ∈ OS
and OS |= ϕ for all ϕ ∈ O′S .

It is easy to see that (QLSO,QLSO) has uniform interpolation: given an
ontology O in second-order logic and a signature S, let OS consist of the
sentence

∃S1. · · · ∃Sn.
∧
O,

where {S1, . . . , Sn} = sig(O) \ S. Then OS is a uniform interpolant. We now
investigate uniform interpolants for weaker languages.

Example 12. Let

O = {Hand v Body part,Body part v Physical object}

and S = {Hand,Physical object}. Then OS = {Hand v Physical object} is an
S-uniform interpolant of O w.r.t. any of the query languages QL considered
in this paper.
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Example 13. Let

O = {Human v ∃child of.Male}, S = {Human,Male}

Then OS = {Human v ∃u.Male} is an S-uniform interpolant of O w.r.t. any
query language with expressivity between QLALCU and QLSO.

Theorem 17. Let L be any of the DLs ALC, ALCQ, ALCI, ALCQI, ALCU ,
ALCIU , ALCQU , ALCQIU . Then for every L-ontology O and every signa-
ture S that consists of concept names, there exists an S-uniform interpolant
of O w.r.t. (L,QLL).

Proof. By Theorem 15, all (L,QLL) are robust under vocabulary extensions.
Thus, it is sufficient to show that there is an ontology OS with O ≈QLLS OS .
The set

O′S = {C v D | O |= C v D, C, D LS-concepts}.

is our starting point. It has the required property, but may be infinite.
Assume first that L does not contain the universal role. Then, since S

does not contain any roles, every concept C from O′S is equivalent to some
Boolean expression over S. As there are only finitely many non-equivalent
such expressions, we obtain a finite set OS ⊆ O′S which is S-inseparable from
O′S w.r.t. QLL. OS is as required.

Now assume that L contains the universal role. Then every LS-concept S
can be regarded as a formula of modal logic S5. It is known (and straightfor-
ward to prove) that there are only finite many non-equivalent S5-formulas in
a given number of variables. Hence, again, we obtain a finite set OS ⊆ O′S
which is S-inseparable from O′S w.r.t. QLL. OS is as required. ut

It seems worthwhile to point out that uniform interpolants may be large: the
smallest such OS from Theorem 17 can be of size exponential in O [29]. In
[29], it is proved that none of the combinations (L,QLL) from Theorem 17
has uniform interpolation.

Theorem 18. Let L be any of the DLs ALC, ALCQ, ALCI, ALCQI, ALCU ,
ALCIU , ALCQU , ALCQIU . Then (L,QLL) does not have uniform interpo-
lation.

Proof. For theALC-ontologyO and signature S given in the proof of Lemma 6
of [29] there does not exist a FO-ontology OS with sig(OS) ⊆ S such that O
and OS are S-inseparable w.r.t. QL, for any of the query languages QL listed
above. ut

It follows from the proof of Theorem 18 that (QLFO,QLFO) does not have
uniform interpolation. We still provide a direct proof.

Proposition 6. (QLFO,QLFO) does not have uniform interpolation.
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Proof. Let O be an axiomatisation of the theory of dense linear-orders using
the binary relation symbol <. Each model of O has an infinite domain, O
therefore implies ϕn = ∃x1 · · · ∃xn

∧
i 6=j xi 6= xj , for all n ≥ 1. But there

does not exist a finite and consistent set of first-order axioms over the empty
signature which implies all ϕn, n ≥ 1. ut

We have seen that standard DLs and first-order logic do not have uniform
interpolation. This defect can be cured by adding second-order quantification.
We briefly discuss the extension ALCµ of ALC that has uniform interpolation.
ALCµ-concepts C are defined as follows. Let V be an infinite set of concept
variables. Then

• every ALC-concept, possibly with some concept names replaced with con-
cept variables, is an ALCµ-concept;

• if C is an ALCµ-concept in which X ∈ V occurs positively (under an even
number of negations), then µX.C is an ALCµ-concept.

To assign a semantics to ALCµ-concepts, an interpretation is combined with
an assignment τ : V → 2∆

I
. Then the extension (µX.C)I,τ of µX.C is defined

as

(µX.C)I,τ =
⋂
{S ⊆ ∆I | CI,τ

′
⊆ S, τ ′(X) = S, for all Y 6= X: τ ′(Y ) = τ(Y )}.

A closed ALCµ-concept is a ALCµ-concept without free concept variables.
An ALCµ-ontology is a finite set of implications C v D, where C and D are
closed ALCµ-concepts. Other notions are now defined in the same way as for
ALC. ALCµ is a very powerful description logic in which subsumption is still
ExpTime-complete. We refer the reader to [7, 3] for further information.

The following result can now be proved using uniform interpolation results
for the modal µ-calculus from [19].

Theorem 19. (ALCµ,QLALCµ) has uniform interpolation.

8 Weaker Description Logics and Acyclic TBoxes

So far, we have concentrated on extensions of ALC and ontologies that are sets
of implications between concepts or even first- and second-order sentences. In
this section, we have a brief look at what happens if we consider weaker DLs
and/or a weaker form of ontology called an acyclic ontology.

8.1 EL

EL and its extensions form a family of lightweight description logics that are
popular for the formulation of large medical and biological ontologies such as
Snomed ct. Technically, EL is the fragment of ALC that admits only the
constructors C uD and ∃r.C and EL-ontologies are finite sets of implications
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C v D between EL-concepts C,D. In EL, subsumption and a number of other
relevant reasoning tasks can be solved in polynomial time [2]. Note that every
EL-ontology is satisfiable and thus subsumption is not reducible to satisfia-
bility and the query language QL⊥ does not separate any EL-ontologies.

In the following, we briefly summarise what is known about modularity
of EL-ontologies. The query languages QLEL, QLIEL, and QLqEL are defined
in the same way as the corresponding query languages for ALC, except that
all involved concepts have to be formulated in EL. The following theorem
summarises the results for inseparability in EL obtained in [38, 29, 39]:

Theorem 20.
(i) S-inseparability w.r.t. QLIEL coincides with S-inseparability w.r.t. QLEL
but does not coincide with S-inseparability w.r.t. QLqEL.
(ii) For QL any of QLEL, QLIEL, QLqEL:

• S-inseparability w.r.t. QL is ExpTime-complete.
• (EL,QL) is robust under signature extensions and joins, but not under

replacement.
• (EL,QL) does not have uniform interpolation.

(iii) Semantic conservativity is undecidable for EL-ontologies.

Many interesting problems remain open for EL. For example, nothing is known
about the minimal query language extending QLEL and robust under replace-
ment.

8.2 DL-Lite

The DL-Lite family of description logics consists of lightweight languages
whose main application is to describe constraints over data repositories.
In contrast to other DLs, data complexity of query answering is within
LogSpace for most members of the family, and conjunctive queries over
ontologies and ABoxes can be effectively rewritten as SQL queries so that
standard database query engines can be used for query answering [9, 10, 1].

Modularity properties and the complexity of corresponding reasoning
problems have been investigated in [30, 31] for the dialects DL-Litebool and
DL-Litehorn. It turns out that those languages are rather well-behaved. We
summarise here the behaviour of DL-Litebool and refer to [31] for information
about DL-Litehorn. DL-Litebool concepts are constructed from NC and NR

using the Boolean operators, u and ¬, and unqualified number restrictions
(≥ n r) and (≤ n r), where r is a role name or its inverse. A DL-Litebool on-
tology is a finite set of implications between DL-Litebool-concepts. The query
languages QLDL-Litebool

and QLqDL-Litebool
are defined in the same way as the cor-

responding query languages for ALC, except that now all concepts involved
range over DL-Litebool concepts. The following theorem summarises what is
known about DL-Litebool [31]:
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Theorem 21. Let (L,QL) = (DL-Litebool,QLDL-Litebool
). Then the following

holds:

• S-inseparability w.r.t. QL is Πp
2 -complete;

• (L,QL) is robust under vocabulary extensions and joins, but not under
replacement;

• (L,QL) has uniform interpolation.

Let (L,QL) = (DL-Litebool,QL
q
DL-Litebool

). Then the following holds:

• S-inseparability w.r.t. QL is Πp
2 -complete;

• (L,QL) is robust under vocabulary extensions, joins and replacement.

For results on uniform interpolation of (DL-Lite,QLqDL-Litebool
), we once more

refer to [31]. Experimental results on deciding S-inseparability using QBF-
solvers are also reported in [31].

8.3 Acyclic Ontologies

For a description logic L, an acyclic L-ontology O is a finite set of expressions
A ≡ C and A v C, A a concept name, such that

• no concept name occurs twice on the left hand side and
• the relation ≺O ⊆ NC × NC, defined by (A,B) ∈ ≺O iff B occurs in C for

some A ≡ C ∈ O or A v C ∈ O, is acyclic.

We refer the reader to [3] for more information. Many ontologies from practical
applications are acyclic, including such prominent cases as Snomed ct. In this
section, we discuss the impact on S-inseparability and modularity of switching
from general ontologies as used so far to acyclic ones.

For members of the EL family of DLs, this switch can significantly reduce
the complexity of reasoning about inseparability and may enable desirable
features such as uniform interpolation. In particular, it has been shown that

• S-inseparability of acyclic EL-ontologies w.r.t. QLEL is tractable, in con-
trast to ExpTime-hardness for general EL-ontologies [29]. Experiments
show that S-inseparability of distinct versions of the huge Snomed ct
ontology can be swiftly decided in practice.

• deciding whether O2 is a semantic S-conservative extension of O1 is
tractable for acyclic EL-ontologies O1,O2 and signatures S ⊇ sig(O1),
in contrast to undecidability for general EL-ontologies [28]. An efficient
module extraction algorithm based on this result has been implemented
and successfully used with Snomed ct.

As already mentioned, another benefit of acyclic ontologies over general ones
is uniform interpolation. While (EL,QLEL) does not admit uniform inter-
polation, an S-uniform interpolant w.r.t. (EL,QLEL) exists for every acyclic
EL-ontology O and signature S [29].
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For expressive DL such as ALC, acyclicity of ontologies typically does
not yield any benefits. For example, it is still Π1

1 -hard to decide whether
an acyclic ALC-ontology is a semantic S-conservative extension of an empty
ontology [28] and even for acyclic ALC-ontologies and signatures S there does
not always exist a uniform S-interpolant w.r.t. (ALC,QLALC) [29].

9 Conclusion

We have investigated the notion of inseparability of ontologies w.r.t. a query
language. As argued in the introduction and throughout the paper, this notion
is central to logic-based approaches to modularity of ontologies. In particular,
inseparability is commonly used to define independence of a module inside an
ontology, and it can also be employed to understand and control the ramifi-
cations of re-using an ontology within another ontology. We have argued that
the notion of inseparability has to be parameterised by a query language, and
have identified three important meta-properties of inseparability: robustness
under vocabulary extension, under joins, and under replacement. We have
also investigated the relationship between these properties and interpolation,
and discussed the computation complexity of deciding inseparability. Finally,
be have briefly touched upon the relationship between inseparability and for-
getting/uniform interpolation. Numerous technical problems are still open.
To mention a few, the robustness properties and computational complexity of
inseparability w.r.t. the query languages QLqL defined in terms of conjunctive
queries have not yet been investigated in any detail for DLs above ALC. Also,
‘positive’ results for forgetting/uniform interpolation have been established
only for very lightweight fragments of ALC.

The theory developed in this paper has been evaluated in practice for on-
tologies formulated in the lightweight description logics EL and DL-Lite, with
rather promising results [29, 31, 28]. In contrast, no ‘practical’ algorithms or
experimental results have yet been obtained for deciding inseparability be-
tween ontologies formulated in more expressive languages such as ALC. Thus,
it remains to be explored whether deciding inseparability in such languages
is feasible in practice, or whether more pragmatic approaches such as the
locality-based one of [17] are the only feasible logic-based way to approach
inseparability of ontologies formulated in expressive DLs.

We have confined our investigation to specific ontology and query lan-
guages, all of them fragments of second-order logic. In general, it would be
interesting to develop a more general framework that allows to integrate on-
tologies formulated in (almost) arbitrary languages, covering, for example,
non-classical logics, algebraic formalisms and non-monotonic languages. In
software specification, the notion of institutions provides such a framework
[25] and, recently, institutions have been proposed as a tool to investigate
the modularity of ontologies [33, 36, 44]. However, a lot of work remains to
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be done. For example, the important distinction between query and ontology
language has not yet been made explicit in the institutions approach.
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A Deferred Proofs for Section 5

Proposition 7. Neither (ALCO,QLALCO) nor (ALCH,QLALCH) is robust
under joins.

Proof. We start with ALCO. Let O0 = {> v ∃r.>} and

O1 = O0 ∪ {A v ∀r.¬A,¬A v ∀r.A}, O2 = O0 ∪ {{a} v ∃r.{a}}.

Then both, O1 and O2, are conservative extensions of O0 w.r.t. QLALCO. On
the other hand, O1 ∪ O2 is inconsistent. It follows that O1 ≈ALCOS O2 for
S = {r} but O1 ∪ O2 6≈ALCOS O2.

For ALCH take

O0 = {> v ∀ri∀rj .⊥ | i, j = 1, 2} ∪ {∃r1.> ≡ ∃r2.>},

O1 = O0 ∪ {s v r1, s v r2,∃r1.> v ∃s.>},
and

O2 = O0 ∪ {∃r1.> v ∀r1.B u ∀r2.¬B}
Then O1 and O2 are conservative extensions of O0 w.r.t. QLALCH. Hence O1

and O2 are S-inseparable w.r.t. QLALCH for S = {r1, r2}.
On the other hand, O1 6|= ∃r1⊥ v ⊥ and O1 ∪ O2 |= ∃r1.> v ⊥ and,

therefore, O1 and O1 ∪ O2 are nor S-inseparable w.r.t. QLALCH. ut

Theorem 4. Let L be any of the DLs ALC, ALCI, ALCQ, ALCQI, S a
signature, and assume that O1 and O2 contain only roles from S. Then

O1 ≈QLLS O2 implies O1 ∪ O ≈QLLS O2 ∪ O,

for all L-ontologies O with sig(O) ∩ sig(O1 ∪ O2) ⊆ S.

Proof. We give a sketch for the case L = ALC. Let O1 ≈QLLS O2 and assume
that O1 ∪ O |= C0 v D0, where sig(O) ∩ sig(O1 ∪ O2) ⊆ S and sig(C0 v
D0) ⊆ S. Let S′ = S ∪ sig(O). By robustness under vocabulary extensions,
O1 ≈QLLS′ O2. Let

Γ = {∀r1. · · · ∀rn.(¬C tD) | C v D ∈ O, ri ∈ S′, n ≥ 0}.

Using the condition that there are no additional roles in O1, it is not difficult
to show that d ∈ (¬C0 tD0)I for every model I of O1 and d ∈ ∆I such that
d ∈ EI for all E ∈ Γ . By compactness, there exists a finite subset Γ ′ of Γ
with the same property. It follows that

O1 |=
l
Γ ′ u C0 v D0

from which we obtain O2 |=
d
Γ ′ u C0 v D0. Since O |= > v

d
Γ ′, this

implies O2 ∪ O |= C0 v D0. ut
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B Interpolation

We provide a proof of the interpolation property and robustness under joins
for basic DLs. Interpolation has been extensively investigated for many modal
logics closely related to DLs [41], and also for some description logics [13].
However, one has to be careful when transferring interpolation results from
modal logic to DL: most interpolation results in modal logic regard modal
operators as logical symbols and thus not as a part of the signature. This
implies that even if the input formulas Ψ or ϕ do not contain a modal operator
�, this operator is nevertheless permitted in the interpolant for Ψ and ϕ. In
DLs, the corresponding constructor ∀r is not permitted in the interpolant
unless the role r occurs in Ψ or ϕ.

Let L be a DL. For an interpretation I, point d ∈ ∆I and signature S, we
set

tL,SI (d) = {C | d ∈ CI , C an LS-concept}.

We say that two points d1 and d2 from possibly distinct interpretations I1
and I2 are L, S-equivalent, written (I1, d1) ∼LS (I2, d2), if

tL,SI1 (d1) = tL,SI2 (d2).

We drop the L and write d1 ∼S d2 instead of (I1, d1) ∼LS (I2, d2) if I1, I2
and L are understood. A mapping f from ∆I1 to ∆I2 is called S-invariant iff
x ∼S f(x) for all x in the domain of f .

Proposition 8. Let L be any of the DLs ALC, ALCQ, ALCI, ALCQI,
ALCU , ALCQU , ALCIU , or ALCQIU . Let Ψ1 and Ψ2 be sets of QLL-
sentences and S a signature such that sig(Ψ1) ∩ sig(Ψ2) ⊆ S. Assume there
are models I1 and I2 of Ψ1 and Ψ2, respectively, such that

(a) for all LS-concepts C: CI1 6= ∅ iff CI2 6= ∅.

Then there exists a model I of Ψ1 ∪ Ψ2 such that

• for all LS-concepts C: CI 6= ∅ iff CI1 6= ∅ iff CI2 6= ∅.

If, in addition,

(b) there are points d1 ∈ ∆I1 and e1 ∈ ∆I2 such that d1 ∼LS e1,

then I contains a point d satisfying

• tL,S1
I (d) = tL,S1

I2 (e1), where S1 = S ∪ ((NC ∪ NR) \ sig(Ψ1)) and
• tL,S2

I (d) = tL,S2
I1 (d1), where S2 = S ∪ ((NC ∪ NR) \ sig(Ψ2)).

Proof. Let L be any of the eight DLs listed in the proposition. We assume that
L contains inverse roles (the prove for DLs without inverse rules is simpler
and is easily obtained from the proof below). Let I1 and I2 be interpretations
satisfying condition (a). We use a standard construction from model theory.
Consider the disjoint union I0 of I1 and I2:
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I0 = (∆I1 ∪∆I2 , AI01 , AI02 , ·I1 , ·I2),

where we assume that ∆I1 ∩∆I2 = ∅ and that AI0i = ∆Ii for fresh concept
names Ai, i = 1, 2. Then I0 is elementarily equivalent to an interpretation
I ′0, which is countably recursively saturated [14]. This means that, if every
finite subset of a recursive set of first-order formulas is satisfied in I ′0, then
the recursive set itself is satisfied in I ′0. We will not go into the details of
this construction but will use the following consequences: by taking, instead
of I1 and I2, the corresponding substructures I ′1 and I ′2 (induced by A

I′0
1

and A
I′0
2 ) of I ′0, we obtain interpretations which still satisfy condition (a) of

Proposition 8 and have, in addition, the following properties:

1. For each d1 ∈ ∆I
′
1 , there exists d2 ∈ ∆I

′
2 such that (I ′1, d1) ∼LS (I ′2, d2)

and vice versa;
2. if (I ′1, d1) ∼LS (I ′2, d2) and (d1, e1) ∈ rI

′
1 with r ∈ S, then there exists

e2 ∈ ∆I
′
2 with (d2, e2) ∈ rI′2 and (I ′1, e1) ∼LS (I ′2, e2);

3. if (I ′1, d1) ∼LS (I ′2, d2) and (d2, e2) ∈ rI
′
2 with r ∈ S, then there exists

e1 ∈ ∆I
′
1 with (d1, e1) ∈ rI′1 and (I ′1, e1) ∼LS (I ′2, e2);

4. if (I ′1, d1) ∼LS (I ′2, d2) and r ∈ S ∪S− and L contains number restrictions,
then there exists an S-invariant bijection between {d | (d1, d) ∈ rI′1} and
{e | (d2, e) ∈ rI

′
2}.

Intuitively, for Point 4 above, we need number restrictions in L, because,
without them, DLs are too weak to determine the number of r-successors of a
node. In what follows, we use I1 and I2 to denote I ′1 and I ′2, respectively. If
condition (b) of Proposition 8 is satisfied, then take d1 and e1 satisfying (b).
Otherwise, take arbitrary S-equivalent points d1 ∈ ∆I1 and e1 ∈ ∆I2 , which
exist by Point 1 above. We unravel the model I1 starting from d1 as follows:
take infinitely many copies di, i ≥ 0, of each d ∈ ∆I1 and define J1 by taking
as the domain ∆J1 the set of all finite sequences

(d1, r2, d
i2
2 , r3, d

i3
3 , · · · , rn, dinn ),

where di ∈ ∆I1 , ri ∈ NR ∪ NR
− ∪ {δ} (with δ being some fresh “dummy”

relation symbol) and ij ≥ 0 for j ≥ 2, such that the following conditions hold:

(i) ij = 0 whenever rj ∈ NR ∪ NR
− and L contains qualified number restric-

tions;
(ii) (di, di+1) ∈ rI1i+1 whenever ri ∈ NR ∪ NR

−;
(iii)di 6= di+2 whenever ri+1 = (ri+2)− and L contains qualified number re-

strictions.

The interpretation function ·J1 of J1 is defined as follows:

• (d1, r2, d
i2
2 , · · · , rn, dinn ) ∈ AJ1 iff dn ∈ AI1 , for all A ∈ NC;

• for all r ∈ NR, rJ1 consists of all pairs

((d1, r2, d
i2
2 , · · · , rn, dinn ), (d1, r2, d

i2
2 , · · · , rn, dinn , rn+1, d

in+1
n )) ∈ ∆J1 ×∆J1 ,
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where rn+1 = r, and

((d1, r2, d
i2
2 , · · · , rn, dinn , rn+1, d

in+1
n ), (d1, r2, d

i2
2 , · · · , rn, dinn )) ∈ ∆J1 ×∆J1

with rn+1 = r−.

It is not difficult to show, that (d1, r2, d
i2
2 , · · · , rn, dinn ) ∼NC∪NR

dn, for every
dn ∈ ∆I1 . Observe that conditions (i) and (iii) ensure that, if L contains
qualified number restrictions, then the number of r-successors of any point in
∆I1 , r ∈ NC ∪ NC

−, satisfying a certain set of concepts remains the same. In
contrast, if L does not contain qualified number restrictions, then we introduce
infinitely many copies di of any r-successor. The reason is that later we want
to amalgamate the unravellings of I1 and I2, and, therefore, need the same
number of r-successors satisfying the same LS-concepts in both unravellings.
Construct J2 from I2 and the point e1 in the same way.

We define an S-isomorphism ρ between J1 and J2 as the union of partial
S-isomorphisms ρ0 ⊆ ρ1 ⊆ ρ2 ⊆ . . ., where

• ρn is an S-isomorphism between the restrictions of J1 and J2 to the points
of length not exceeding n; i.e., points (d1, r2, d

i2
2 , . . . , d

im
m ) ∈ ∆J1 , and

(e1, r2, ei22 ,
. . . , eimm ) ∈ ∆J2 , where m ≤ n;

• for each w ∈ dom(ρn): w ∼S ρn(w).

The sequence of partial S-isomorphisms is inductively defined as follows. For
the induction base, set ρ1((d1)) = (e1). Consider the induction step. Suppose
that ρn has been defined. Assume ρn(w1) = w2, where

w1 = (d1, r2, d
i2
2 , . . . , rn, d

in
n ), and

w2 = (e1, s2, e
j2
2 , . . . , sn, e

jn
n ).

Observe that rn ∈ S∪S− implies sn = rn since ρn is a partial S-isomorphism.
Now ρn+1 is defined by adding, for each (w1, w2), the following pairs to ρn:

• If r ∈ S ∪ S− with rn 6= r− and L contains qualified number restrictions,
we can take (by Point 4 above) an S-invariant bijection b between the
rI1-successors of dn and the rI2-successors of en and extend ρn with the
set

{((w1, r, d
0), (w2, r, b(d)0) | (dn, d) ∈ rI1}.

• If r ∈ S ∪ S− with rn = r− and L-contains qualified number restrictions,
consider the sets

B1 = {d | (dn, d) ∈ rI1} \ {dn−1} and B2 = {e | (en, e) ∈ rI2} \ {en−1}.

We have dn−1 ∼S en−1. Hence, by Point 4 above, there exists an S-
invariant bijection b between B1 and B2. Extend ρn with the set

{((w1, r, d
0), (w2, r, b(d)0) | d ∈ B1}.
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• If r ∈ S ∪ S− and L does not contain qualified number restrictions, we
find (by Points 2 and 3) a bijection b between the sets

B1 =
⋃
i≥0

{di | (dn, d) ∈ rI1} and B2 =
⋃
i≥0

{ei | (en, e) ∈ rI2}

such that b(di) = ej implies d ∼S e. Extend ρn with the set

{((w1, r, d), (w2, r, b(d))) | d ∈ B1}.

• Finally, take an S-invariant bijection b between the remaining points
(w1, rn+1,
din+1) of ∆J1 and (w2, sn+1, e

i
n+1) of ∆J2 . This is possible, because of

Point 1 above and the introduction of the dummy relation symbol δ, which
ensures that, for each d ∈ ∆I1 , there are infinitely many (w1, δ, d

i) ∈ ∆J1

with d ∼LS (w1, δ, d
i), and, correspondingly, for e ∈ ∆J2 . Add b to ρn.

The mapping ρ =
⋃
n≥1 ρn is an S-isomorphism between J1 and J2. The

required model I is now constructed by taking the model J1 but interpreting
the A ∈ NC ∩ sig(Ψ2) as ρ−1(AJ2) and the r ∈ NR ∩ sig(Ψ2) as ρ−1(rJ2). ut

Proposition 9. Let L be any of the languages ALC, ALCQ, ALCI, ALCQI,
ALCU , ALCQU , ALCIU , ALCQIU . Then QLL has interpolation.

Proof. Let L be any of the DLs listed in the proposition. Assume that there
exists a set Ψ of QLL-sentences and L-concepts C0, D0 with Ψ |= C0 v D0

such that there does not exist an interpolant I(Ψ,C0 v D0). Let S = sig(Ψ)∩
sig(C0 v D0) and

ΨS = {C v D | Ψ |= C v D, sig(C v D) ⊆ S}.

Then Ψ |= ΨS and ΨS 6|= C0 v D0, by compactness. Take a model I ′2 of
ΨS with e1 ∈ (C0 u ¬D0)I

′
2 . Take a model I ′1 of Ψ containing a point d1

such that (I ′1, d1) ∼LS (I ′2, e1). The existence of such a model follows again by
compactness. Now the proof splits into two parts.

(i) Assume first that L contains the universal role. Then, for all LS-
concepts C, CI

′
2 = ∅ iff CI

′
1 = ∅, because d1 ∈ (∃u.C)I1

′
iff e1 ∈ (∃u.C)I2

′
. It

follows that, for Ψ1 = Ψ and Ψ2 = ∅, the models I ′1 and I ′2 and points d1 and
e1 satisfy the conditions of Proposition 8. We obtain a model I of Ψ such that
(C0 u ¬D0)I 6= ∅. Hence Ψ 6|= C0 v D0 and we have derived a contradiction.

(ii) Assume now that L does no contain the universal role. Let

C = {C | C a LS-concept with Ψ 6|= C v ⊥}

and take for each C ∈ C a model IC of Ψ such that CIC 6= ∅. Let I1 be the
disjoint union of the models I ′1 and IC , C ∈ C. Correspondingly, let I2 be
the disjoint union of the models I ′2 and IC , C ∈ C. Again, I1, I2, d1, e1 satisfy
the conditions of Proposition 8 for Ψ1 = Ψ and Ψ2 = ∅. Hence there exists a
model I of Ψ with (C0 u¬D0)I 6= ∅ and we have derived a contradiction. ut
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Proposition 10. Let L be any of the languages ALC, ALCQ, ALCI, ALCQI.
Then (L,QLL) is robust under joins.

Proof. Fix a DL L from the proposition. Let O1 and O2 be L-ontologies.
Assume O1 and O2 are S-inseparable w.r.t. QLL with sig(O1)∩ sig(O2) ⊆ S.
Let, for i = 1, 2,

Ci = {C | C a LS-concept with Oi 6|= C v ⊥}.

By S-inseparability, C1 = C2. Take, for each C ∈ C1, a model I1
C of O1 such

that CI
1
C 6= ∅ and let I1 be the disjoint union of the models I1

C , C ∈ C1.
Similarly, take, for each C ∈ C1, a model I2

C of O2 such that CI
2
C 6= ∅ and

let I2 be the disjoint union of the models I2
C , C ∈ C1. Then I1 and I2 satisfy

the conditions of Proposition 8 for Ψ1 = O1 and Ψ2 = O2. Hence, there exists
a model I of O1 ∪ O2 such that CI 6= ∅ whenever C ∈ C1. It follows that
O1 ∪ O2 and Oi are S-inseparable w.r.t. QLL, i = 1, 2. ut
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