Skip to main content

Comparison of Rule-Based and DTMRI-Derived Fibre Architecture in a Whole Rat Ventricular Computational Model

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5528))

  • 2444 Accesses

Abstract

The anisotropic electrical conduction within myocardial tissue due to preferential cardiac myocyte orientation (‘fibre orientation) is known to impact strongly in electrical wavefront dynamics, particularly during arrhythmogenesis. Faithful representation of cardiac fibre architecture within computational cardiac models which seek to investigate such phenomena is thus imperative. Drawbacks in derivation of fibre structure from imaging modalities often render rule-based representations based on a priori knowledge preferential. However, the validity of using such rule-based approaches within whole ventricular models remains unclear. Here, we present the development of a generic computational framework to directly compare the fibre architecture predicted by rule-based methods used within whole ventricular models against fibre structure derived from DTMRI data, and assess how relative differences influence propagation dynamics throughout the ventricles. Results demonstrate the close overall match between the methods within the rat ventricles, and highlight regions for potential rule-adaption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexander, A.L., Hasan, K.M., Lazar, M., Tsuruda, J.S., Parker, D.L.: Analysis of partial volume effects in diffusion-tensor MRI. Magn. Reson. Med. 45, 770–780 (2001)

    Article  Google Scholar 

  2. Clerc, L.: Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255, 335–346 (1976)

    Article  Google Scholar 

  3. Fenton, F., Karma, A.: Fiber-rotation-induced vortex turbulence in thick myocardium. Phys. Rev. Lett. 81, 481–484 (1998)

    Article  MATH  Google Scholar 

  4. Hooks, D.A., Tomlinson, K.A., Marsden, S.G., LeGrice, I.J., Smaill, B.H., Pullan, A.J., Hunter, P.J.: Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ. Res. 91, 331–338 (2002)

    Article  Google Scholar 

  5. Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L.H., Yang, M.J., Chen, P.S.: A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. Biophys. J. 94, 392–410

    Google Scholar 

  6. Peryat, J.-M., Sermesant, M., Pennec, X., Delingette, H., Xu, C., McVeigh, E., Ayache, N.: A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of cannine hearts. IEEE Trans. Med. Imag. 26, 1–15 (2007)

    Article  Google Scholar 

  7. Plank, G., Burton, R., Hales, P., Bishop, M.J., Mansoori, T., Bernabeau, M., Garny, A., Prassl, A.J., Bollensdorf, C., Mason, F., Rodriguez, B., Grau, V., Schneider, J., Gavaghan, D.J., Kohl, P.: Generation of histo-anatomically representative models of the individual heart: tools and application. Phil. Trans. Roy. Soc. (2009)

    Google Scholar 

  8. Potse, M., Dube, B., Richer, J., Vinet, A., Gulrajani, R.M.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53, 2425–2435 (2006)

    Article  Google Scholar 

  9. Prassl, A.J., Kickinger, F., Ahammer, Grau, v.H., Schneider, J.E., Hofer, E., Vigmond, E.J., Trayanova, N.A., Plank, G.: Automatically Generated, Anatomically Accurate Meshes for Cardiac Electrophysiology Problems (2008) (under review)

    Google Scholar 

  10. Qu, Z.L., Kil, K., Xie, F.G., Garfinkel, A., Weiss, J.N.: Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness and fiber rotation. Biophys. J. 78, 2761–2775 (2000)

    Article  Google Scholar 

  11. Scollan, F., Holmes, F., Winslow, R., Forder, J.: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol. Heart Circ. Physiol. 275, 2308–2318 (1998)

    Google Scholar 

  12. Seemann, G., Keller, D.U.J., Weiss, D.L., Dössel, O.: Modelling human ventricular geometry and fiber orientation based on diffusion tensor MRI. Proc. Comp. Cardiol. 33, 801–804 (2006)

    Google Scholar 

  13. Streeter, D.D., Spontnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24, 339–347 (1969)

    Article  Google Scholar 

  14. Weiss, D.L., Keller, D.U.J., Seemann, G., Doessel, O.: The influence of fibre orientation, extracted from different segments of the human left ventricle, on the activation and repolarization sequence: a simulation study. Europace 9, 96–104 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bishop, M.J., Hales, P., Plank, G., Gavaghan, D.J., Scheider, J., Grau, V. (2009). Comparison of Rule-Based and DTMRI-Derived Fibre Architecture in a Whole Rat Ventricular Computational Model. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics