Abstract
Cardiac magnetic resonance (MR) imaging has advanced to become a powerful diagnostic tool in clinical practice. Automatic detection of anatomic landmarks from MR images is important for structural and functional analysis of the heart. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, context, around the target. Conventional context is associated with each individual landmark to encode local shape and appearance evidence. We extend this concept to a landmark set, where multiple landmarks have connections at the semantic level, e.g., landmarks belonging to the same anatomy. We propose a joint context approach to construct contextual regions between landmarks. A discriminative model is learned to utilize inter-landmark features for landmark set detection as an entirety. This helps resolve ambiguities of individual landmark detection results. A probabilistic boosting tree is used to learn a discriminative model based on contextual features. We adopt a marginal space learning strategy to efficiently learn and search a high dimensional parameter space. A fully automatic system is developed to detect the set of three landmarks of the left ventricle, the apex and the two basal annulus points, from a single cardiac MR long axis image. We test the proposed approach on a database of 795 long axis images from 116 patients. A 4-fold cross validation results show that about 15% reduction of the errors is obtained by integrating joint context into a conventional landmark detection system.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cousty, J., Najman, L., Couprie, M., Clement-Guinaudeau, S., Goissen, T., Garot, J.: Automated, accurate and fast segmentation of 4D cardiac MR images. In: Sachse, F.B., Seemann, G. (eds.) FIMH 2007. LNCS, vol. 4466, pp. 474–483. Springer, Heidelberg (2007)
Frangi, A., Niessen, W., Viergever, M.: 3D modeling for functional analysis of cardiac images: a review. IEEE Trans. on Medical Imaging 20(1), 2–25 (2001)
Finn, J.P., Nael, K., Deshpande, V., Ratib, O., Laub, G.: Cardiac MR imaging: State of the technology. Radiology 241(2), 338–354 (2006)
Koikkalainen, J., Pollari, M., Lotjonen, J., Kivisto, S., Lauerma, K.: Segmentation of cardiac structures simultaneously from short- and long-axis MR images. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 427–434. Springer, Heidelberg (2004)
Jolly, M.P.: Automatic segmentation of the left ventricle in cardiac MR and CT images. International Journal of Computer Vision 70(2), 151–163 (2006)
Young, A., Cowan, B., Thrupp, S., Hedley, W., Dell’Italia, L.: Left ventricular mass and volume: Fast calculation with guide-point modeling on MR images. Radiology 216(2), 597–602 (2000)
Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)
Georgescu, B., Zhou, X., Comaniciu, D., Gupta, A.: Database-guided segmentation of anatomical structures with complex appearance. In: Proc. IEEE CVPR (2005)
Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features. In: Proc. ICCV (2007)
Tu, Z.: Probabilistic boosting-tree: Learning discriminative models for classification, recognition, and clustering. In: Proc. ICCV, pp. 1589–1596 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lu, X., Georgescu, B., Littmann, A., Mueller, E., Comaniciu, D. (2009). Discriminative Joint Context for Automatic Landmark Set Detection from a Single Cardiac MR Long Axis Slice. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_49
Download citation
DOI: https://doi.org/10.1007/978-3-642-01932-6_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01931-9
Online ISBN: 978-3-642-01932-6
eBook Packages: Computer ScienceComputer Science (R0)